Gth ANNUAL TELEVISION NUMBER

RATDID—n lu/w JANUARY 1953 III:C:TIRONIC:S LATEST IN TELEVISION• SERVICING•AUDIO

Inthis Issue:
Articles by Guy, Rider, Tilton • Directories and listings of: TV Receivers, Boosters, Antennas Components, Kinescopes, Channels •
U. 랪. F. Articles and Circuitry •

DO IT RIGHTDO IT WITH DUMONT

 Teleset Service Control, gives you each month service techniques as they are tested... production changes as they happen!
With the right information, minutes may save hours of troubleshooting. With the right parts, repair is simplified ... service is better...customer satisfaction builds confidence and reputation.

Both are at your local Du Mont Distributor. Look for the Du Mont SERVICE NEWS on your next call . . . and insist on ORIGINAL TELEVISION PARTS.

How far ahead can you be next year ... IN TV AND ELECTRONICS?

Send for this free CREI booklet today ... and find out!

TपHIS BOOKLET can mean the difference between small, w-i-d-e-l-y s-p-a-c-e-d salary increases-and rapid advancement. Between routine work-and challenging opportunity. Between constantly defending your job against better-trained men-and dynamic confidence. Between short-circuited hopes-and high-powered ambition.

An exciting new world has opened up with such superspeed that even the most optimistic electronic experts fall short in their predictions of expansion.

Think of the 113 TV stations now on the air and the 2,500 stations made possible by the FCC unfreeze. Think of the over $18,000,000$ TV sets now in use. That's $5,000,000$ more than we were supposed to have by 1954. Think of the $100,000,000$ radios in current operation. (95% of the nation's homes have one or more sets.) Think of the tremendous defense orders now being placed for electronic equipment and installations.

Think of the thousands of radio-equipped fire and police departments throughout the U.S. Of the many radioequipped railroads, of the hundreds of cities with 2 -way radio service for cars and cabs. Think of the wide-ranging field of aviation communications-radio-controlled aircraft, navigation-and-traffic control, airport stations.

Think of the maritime world with its navigational aids, fathometers, ship-to-shore and ship-to-ship communications and radar. Think of electronic heating, fax and ultra-fax, of electronic medicine, and all the other applications of electronic know-how.

Countless positions must be filled-in development, research, design, production, testing and inspection, manufacture, broadcasting, telecasting and servicing. Who will get those positions? You-if you prepare today-if you are alert and have the ambition to advance your knowledge. You-if you take 2 minutes to send for a free copy of "Your Future in the New World of Electronics."

This helpful book shows you how CREI Home Study leads the way to greater earnings through the inviting opportunities described above.

However, being an accredited technical school, CREI does not promise you a "bed-of-roses." You have to translate your willingness to learn into saleable technical knowledge
-via study. Since its founding in 1927, CREI has provided thousands of professional radiomen with technical educations. During World War II, CREI trained thousands for the Armed Services. Leading firms choose CREI courses for group training in electronics at company expense, among them United Air Lines, Canadian Broadcasting Corporation, Trans Canada Airlines, Bendix Products Division, AllAmerican Cables and Radio, Inc., RCA-Victor Division, and the Machlett Laboratories.

CREI courses are prepared by recognized experts, in a practical, easily-understood manner. You get the benefit of time-tested materials, under the personal supervision of a CREI Staff Instructor. This complete training is the reason why CREI graduates find their diplomas keys-tosuccess in Radio, TV and Electronics. CREI alumni hold top positions in America's leading firms.
At your service is the CREI Placement Bureau, which finds positions for students and graduates. Although CREI does not guarantee jobs, requests for personnel currently exceed supply by far.

Talk to men in the field and check up on CREI's high standing in electronics instruction. Determine for yourself right now that your earnings are going to rise with your knowledge-and that you get your rightful place in the Age of Electronics. All this CREI can promise you, provided you sincerely want to learn. Fill out the coupon and mail it today. We'll promptly send you your free copy of "Your Future in the New World of Electronics." The restthe future-is up to you.

MAIL GOUPON FOR FREE BOOKLET

CAPITOL RADIO ENGINEERING INSTITUTE

Dept. 141, 3224 16th St., N.W., Washington 10, D. C.
Send booklet "Your Future in the New World of Electronics" and course outline. CHEGK \square TV. FM \& Advanced AM Servicing \square Aeronautical Radio Engineering FIELD OF Practical Television Engineering
GREATEST Broadcast Radio Engineering (AM, FM, TV)
INTEREST
\square INTEREST \square Practical Radio Engineering

Nome.

Street.
City ...

Formerly RADIO-CRAFT - Incorporating SHORT WAVE CRAFT - TELEVISION NEWS - RADIO \& TELEVISION*

```
Hugo Gernsback
    Editor-in-Chiof
M. Harvey Gernsback
    Editorial Director
Fred Shunaman
    Managing Editor
Robert F. Scatt
    W2PWG,Technicol Editor
Martimer Bernstein
            Associate Editor
1. Queen
            Editorial Associate
Matthew Mand!
    Television Consultant
Angie Pascale
    Production Manager
Wm. Lyon MeLaughlin
    Tech. illustration Director
Sol Ehrlich
                            Art Director
Lee Robinson
General Manager
John J. Lamson
Sales Manager G. Aliquo
Circulation Manager Robert Folloth
Promotion Manager
```


CONTENTS

JANUARY 1953

6TH ANNUAL TV ISSUE

Editarial (Page 29)
New Television Trends by Hugo Gernsback 29
Television (Pages 30-84)
UHF Opens Up .. by Raymond F. Guy
TV Distribution Systems by Eric Leslio
European TV Network
by Eric Leslio 34

New TV Areas by John F. Rider
NTSC Color TV ... Edward Sieminski 42

Two Mare U.H.F. Converters by Fred King 48
Circuit Shorts by Robert F. Scott 51

U.H.F. Circuitry

Television Antenna Products Directory ... 60
TV Cames to Partland ... Victor Bary 62
Kinescope Replacement Chart ... Scatt E. 64
Television Camponents far Conversion or Repair
TV Service Clinic....................Canducted by Mathew Mand 69
TV Baaster Characteristics
Directory of TV Receiver Characteristics ... 70.71
Audio (Pages 96-104)
Push-Pull Drivers by Gearge Fletcher Cooper 96
Electronic Music-The Eosiest Way, Part II by V. Fastenaekels 102
Servicing-Test Instruments (Pages 106-116)
Crystal Markers for Sweep Generator by Bruce Morrissette 106
Quick Capacitor Checker by George Kelly 114
Construction (Pages 118-135)
Polarized Power Plugs for the Experimenter by L. B. Hedge 118
SW Converter ... Richard Graham 122
Improving Oscillator and A. V. C. Operation by James Sareda 130
New Design (Pages 138-139)
New Long Life Cell Boon to Portables ... 138
ANNUAL Radio-Electronics INDEX ... 168
Departments
The Radio Month Try This One 182

With the Technician 136 Technotes 159
New Patents 140 People 165

Radio-Electranic Circuits 146 Communications..................... 175
Book Reviews 176

as a national schools graduate THERE'S A PLACE FOR YOU IN THIS EXPANDING INDUSTRY...Never before such a demand for you! For never before such a growing inchustry as today's Television, Radio and other Electronic fields. This industry needs you...TODAY... and it needs you as a trained man ... the kind of man you will be as a National Schools graduate. So don't wait. Start your National Schools training NOW... and enjoy big money, job security, SUCCESS!

LEARN from EXPERTS! BE A SUCCESSFUL

 MAN YOURSELF! You learn from men who are themselves successful Radio, Television and Electronics technicians. You learn the practical way...by doing ... with equipment we send you. And you advance quickly, step by step. Get ALL the facts from FREE book and sample lesson. Mail coupon beHow NOW, Absolutely no obligation.
no extra cost!

You can qualify FAST for these big-pay jobs...plus many more

Radio Station Technician • Your own Sales and Service Shop • District Service Manager - Inspector Technician - Aircraft Radio Inspector - Special Govte Positions • Service Specialist • Sound Truck Operator • and many others!

DRAFT AGE? National Schools training helps you get into special service classifications-get higher grades, better pay!

GIT YOUR TRAINING FROM THE RADIO-TV CAPITAL OF THE WORLD

Let Na-

tional
Schools
-a resi-
dent technical trade school for nearly 50 years-train you at home for today's unlimited opportunities in Radio-TV.

NATIONAL SCHOOLS GRADUATES IM BIG DEMAND. You'll find National Schools graduates in good jobs everywhere. For these are the jobs National Schools trains you for. Such complete, shop-method home training can be your ticket to success... your key to the job happiness you've always wanted. It's up to you. Mail coupon NOW!
FRIENDLY GUIDANCE AS STUDENT AND GRADUATE. Our special Welfare Department is constantly at your service. Helps you with your technical and personal problems. Gives you the benefit of its wide industry contacts and experience in helping you after graduation. Write National Schools, 4000 South Figueroa St., Los Angeles 37, California.
NATIONAL SCHOOLS APpovi f bes
Los Angeles, Calif. • Est. 1905 • In Canada: 193 Hastings St., Vancouver, B.C. you get all THE PARTS INCLUDING TUBES for this superheterodyne receiver... and lots of other equipment...to keep!

EARN MORE MONEY AS AN EXPERT

 Get Shop-MethodIraining at Home in i A THEMSION ELEGRONICS

One Master Course - One Low Tuition LEARN ALL PHASES - EARN WHILE YOU LEARN

When you dial a telephone number, high-speed switching mechanisms select your party and connect you. Through a new development of Bell Telephone Laboratories, similar mechanisms are doing the same kind of job in private wire teletypewriter systems which America's great businesses lease from the telephone company.

Company X, for example, operates an air transportation business with scores of offices all over the country. At one of these offices, a teletypewriter operator wishes to send a message, let us say, to Kansas City. Ahead of the message, she types the code letters "KC". The letters become electric signals which guide the message to its destination.

Any or all stations in a network, or any combination of stations, can be selected. Switching centers may handle 50 or more messages a minute ... some users send 30,000 messages a day. Delivery time is a few minutes.

Defense manufacturers, automobile makers, airlines and many other American businesses are benefiting by the speed and accuracy of the new equipment - another example of how techniques developed by the Laboratories for telephone use contribute to other Bell System services as well.

BELL TELEPHONE LABORATORIES

Improving telephone service for America provides
careers for creative men in scientific and technical fields.

-with the aid of BOTH HOME EQUIPMENT and HOME MOVIES

What will mailing the coupon below do for YOU? Just this! You'll find out about one of today's most remarkable... practical ways to prepare to get into America's amazing billion dollar opportunity field of TELEVISION-RADIO-ELECTRONICS. You'll see how to get into fascinating work that pays well...that offers one of America's most promising futures.. that enables you to start your own business almost "on a shoe string," if you prefer this to a job opportunity.
And above all, you'll get some GOOD NEWS especially welcomed by men anxious to earn REAL MONEY in this thrilling field. For you'll see that NOW you can get the kind of practical, laboratory-type training so desirable for making real progress in Television-Radio-Electronics... and WITHOUT LEAVING HOME.
You'll see that DeForest's Training, Inc. sends everything needed to set up your own HOME LAB. ORATORY. You get and keep the same type of basic
electronic equipment used in our modern Chicago
Training Laboratories. You get home training that includes the knowledge and experience gained from training thousands of students first hand in Chicago. And to top it all, you use DTI's amazingly effective and exclusive home training aid-INSTRUCTIVE MOVIES. But why not get the complete story? Mail coupon today for information-packed literature. A. Enjoy well-illustrated, easy-to-read diagrams. MODERN LABORATORIES 5. Gel an honest-to-joodness EMPLO job good iob youprefer, getall your preparation MENT SERVICE to he P Yougance in siariness. in our new Chicago Training Lab-

1. Build over 300 fas-
cinating experiments from 16 BIG SHIPMENTA parls of Elecrronic-REP.
2. Build valuable commer-cial-lype test equipment- you shown to the includes a quad for
KEEP. This KEEP. This COPE - a mus Television work.
projector 3. Use a 16 mm . movie prolech pro duced instructive you grasp impo.better. amazingly efective and exclusive home traid fundamentals fillustrated, easy-fo-arams. not get the complete story? Mall coupon MENT duating - O SERVICE BU details. oratories-one or the finest of its after gradua SALES AND the complete detals, kind. Ample instructors, modern your OWN SAladoy for the equipment. Write for details!

Build and Keep
this 17-INCH
TV RECEIVER
-OPTIONAL after completing regula! training at maderate added

DeFOREST'S TRAINING, INC.

Affiliatediwith
De Vry Technicol instifute
chicaccili, ILINois

Get BOTH of these colorful, information- packed folders FREE

DeFOREST'S TRAINING, INC., DEPT. RE-1-J
2533 N. Ashland Avenue, Chicago 14, III.

I would like valuable

information-packed folders showing how I may get started toward a good job or my own business in Television. Radio-Electronics.

MILITARY SERVICE!

If you're subject to military service, the information we have for you should prove very helpful. Mail coupon today.

enis low line volitage hazaric CREST LVB-117

Line Voltage Booster
ACCURATE VOLIAGE BOOST:

End low line hazard*. . . sub-normal line voltage may cause damage or improper operation of TV set or electrical appliance.

The LVB-117 is engineered to restore peak performance to any TV set set or electrical equipment.

Insures full strength, width, and height of the TV picture when low line voltage weakens or shrinks picture. Corrects intermittent sync and oscillator drift caused by low line voltage.

6 unique features for the ultimate in ACCURATE VOLTAGE BOOST
$\checkmark 300$ WATT RATING . . . ample for most requirements
\checkmark SIMPLE EXTERNAL PLUG-IN . . . 10 second installa. fion aids over the counter sales
\checkmark AUTOMATICALLY OPERATED . . . turns on and off with set or appliance

MULTI-TAP SELECTOR SWITCH . . . permits exact voltage boost

- VISUAL INDICATOR . . . assures exact selection of required boost
\checkmark OVERLOAD CUT OUT . . . protects against unsafe line volitage increase.

Available at local jobbers or write for full details and name of nearest representative.

TELLS HOW

WE GUARANTEE

TO TRAIN AND COACH YOU AT

HOME IN SPARE TIME UNTIL YOU GET

YOUR FCC LICENSE

If you have had any practical experience-Amateur, Army, Navy, radio repair, or experimenting.

- TELLS HOW

Employers Make JOB OFFERS Like These to Our Graduates Every Month!
Letter from Chief Engineer, Broadcast Station, North Carolina. "Need men with radiotelephone list class licenses, no experience necessary. Will learn more than ot average station for we are equipped with Diesel Electric power, transmitting and studio equipment.
Telegram from Chief Engineer, Broadcast Station, Wyoming, "Please send atest list available first class operators. Have November l0th opening for two combo men
Letter from Chief Engineer, Broadcast Station, Texas, "Please send list of latest licensed graduates.
These are just a few examples of the job offers that come to our office periodically. Some lice
HERE'S PROOF FCC LICENSES ARE OFTEN SECURED IN A FEW HOURS OF STUDY WITH our Coaching at home in spare time

Name and Address
Lee Worthy
$2210^{\frac{1}{2}}$ wilshire St., Bakersfield, Calif.
Box 1016 , Dania, Fla
Francis X. Foerch
38 Beucler Pl., Bergenfield, N. J.
S/Sat. Bey 4 Davis
317 North Roosevelt, Lehanon, 11
110 West IIth St., Escondido, Callf
CLEYELAND INSTITUTE OF RADIO ELECTRONICS Carl E. Smith, E. E., Consulting Engineer, President Desk RE-48, 4900 Euclid Bldg., Cleveland 3, Ohio

HERE IS YOUR GUARANTEE
If you fail to pass your Commercial License exam If you fail to pass your Course, we guorantee to conafter completing without additional cost of any kinue your training until you successfully obtain your Commercial lisense, provided you first sif for your course. Welps CIRE Students Get Better Jobs Here are a fow recent examples of Job-Finding results: GETS CIVIL SERVICE JOB "Thanks to your course T obtatned my 2 nd phone license, and am now emplosed by Civil serice at Great Lakes Naval Trating station as an Equipment ineciallise. gets state police job
${ }^{1}$ have oftalned my 1 st class ticket (thanks to your selinol) and Ennce revelving Same I have heid good jobs at all times. I am now Chlef Radio Operator with the Kentucky State Police." Edwin P. Healy, 264 E. 3rd St. . London, Ky.

gets broadcast Job
Our Amazingly Effective JOB-FINDING SERVICE

TELLS HOW...

hank your Job-Finding Servec II wish to thank your Job-Finding Servee for the help In securing for me the position of tran mitter operator
 GETS AIRLINES JOB
'Due to your Job-Finding Service, I have been getting many otiers from all over the country, and I have taken a joh with Capltal Airlines in Chicago, as a Radio Hechanle,

Your FCC Ticket is recognized in all radio fields as proof of your technical ability.

MAIL COUPON NOW

cleveland wsitutr of Rain electronics

 Desk RE-48-4900 Euclid Bldg.Cleveland 3, Ohio
(Address to Desk No. to avoid delay.)
want to know how I can get my FCC ticket in a minimume of time. Send me your FREE booklet: "How to Pass FCC License Examinations" (does not cover exams. for Amateur License) "as Well as a FCC License lnformation" ${ }^{\prime \prime}$ \square Tell me about your Television Engineering Course.

Name
Address
City............................. Zone. State
Zone....State......

\square

Only $\$ 11450$ and you're in Profitable TV Testing

Value-wise you can't make a smarter buy. For if you have a good Signal Generator to use as a marker with 3435, this new Triplett Sweep saves you real moneyl Performance-wise it's Triplett Engineering at its best. There are no complications in use. Continuous range coverage to 240 MC for all TV carrier and IF frequencies. There are no gaps in frequency, and continuous tuning is provided over all TV and FM bands. Note MAIN frequency dial, marked with channels as well as frequencies; continuously variable sweep width, effective from 500 KC to 12 MC ; the PHASE controlled sweep voltage for scope horizontal input; the STANDBY switch for temporary silencing of generator during other testing. These and many other features make Triplett 3435 an outstanding "buy." See it today at your distributor's.

YOU CAN USE ANY A.M. SIGNAL GENERATOR

. . . but if you are critical you'll appreciate this Wide Range Test Oscillator - Triplett 3432. Five fundamental ranges- 165 KC to 40 MC. Two Harmonic ranges $36-120$ MC, directly calibrated. Completely Shielded. Seven directly calibrated 330° scales. Illuminated Dial. Try it today.

Triplett 3432
tRIPLETT ELECTRICAL INSTRUMENT COMPANY, BLUFFTON, OHIO

Tнat's the way to become an expert radio serviceman. Study the theory and principles first. These are vitally important. Then roll up your sleeves and actually work with radios-assembling, experimenting, trouble-shooting, repairing. That way you learn radio from the inside out.
Which explains why I.C.S., in its new Radio Course, concentrates on equipment. You get the best. Matched parts for an excellent 5 -tube superheterodyne receiver. Your own professional-quality multitester. A complete signal generator

kit. High-grade servicemen's tools. "Rider's Perpetual Trouble-Shooter's Manual." Plus lesson material and instruction service second to none. Also included is Principles of Television, which is a steppingstone to TV installation and service. And there's a new course in $F M$ and Television that includes COLOR TV!

Learn by doing! That's the famous I.C.S. method. Practical. Modern. Success proved. The coupon below brings you full details-on radio servicing or any of the 391 I.C.S. Courses. Mail it today!

INTERNATIONAL CORRESPONDENCE SCHOOLS

BOX 2880-8, SCRANTON 9, PENNA.

Without cost or obligation, send me "HOW to SUCCEED" and the booklet about the course BEFORE which I have marked X:

ART	\square Heating	CIVİSTRUCT	\square College Preparatory	\square Stationary Steam Engineering
\square Commercial Art	\square Steam Fitting	ENGINEERING	\square Mathematics	\square Stationary Fireman
\square Magazine and Book	\square Air Conditioning	\square Civil Engineering	\square Commercia!	RADIO, TELEVISION,
Illustrating	\square Electrician	\square Structural Engineering	\square Good English	COMMUNICATIONS
\square Cartooning	BUSINESS	Surveying and Mapping	MECHANICAL	\square General Radio
\square Show Card and Sign Lettering	\square Business Administration	\square Structural Drafting	AND SHOP	\square Radio Operation
\square Fashion Illustrating	\square Certified Public Accountant	\square Highway Engineering	- Mechanical Engineering	\square Radio Servicing-FM
AUTOMOTIVE	\square Accounting	\square Reading Blueprints	\square Industrial Engineering	\square Television
\square Automobile, Mechanic	\square Bookkeeping	\square Concrete Construction	\square Industrial Supervision	\square Electronics
\square Auto-Elec. Technician	\square Stenography and Typing	\square Sanitary Engineering	\square Foremanship	\square Telephone Work
\square Auto Body Rebuilding	\square Secretarial	DRAFTING	\square Mechanical Drafting	RAILROAD
and Refinishing	\square Federal Tax	\square Aircraft Drafting	\square Machine Design-Drafting	\square Locomotive Engineer
\square Diesel-Gas Engines	\square Business Correspondence	\square Architectural Drafting	\square Machine Shop Practice	\square Diesel Locomotive
AVIATION	\square Personnel and Labor Relations	\square Electrical Drafting	\square Tool Design	\square Air Brakes Car Inspector
\square Aeronautical Engineering Jr.	\square Advertising	\square Mechanical Drafting	\square Industrial Instrumentation	\square Railroad Administration
\square Aircraft Engine Mechanic	\square Retail Business Management	\square Structural Drafting	\square Machine Shop Inspection	TEXTJLE
\square Airplane Drafting	\square Managing Small Business	\square Sheet Metal Drafting	Reading Blueprints	\square Textile Engineering
BUILDING	\square Sales Management	\square Mine Surveying and Drafting	\square Toolmaking	\square Cotton Manufacture
\square Architecture	\square Salesmanship	ELECTRICAL	\square Gas-Electric Welding	\square Rayon Manufacture
\square Arch. Drafting	\square Traffic Management	\square Electrical Engineering	\square Heat Treatment-Metallurgy	Woolen Manufacture
\square Building Contractor	CHEMISTRY	\square Electrician	\square Sheet Metal Work	\square Loom Fixing
\square Estimating	\square Chemical Engineering	Electrical Maintenance	\square Sheet Metal Pattern Drafting	\square Finishing and Dyeing
\square Carpenter and Mill Work	\square Chemistry	\square Electrical Drafting	Refrigeration	\square Textile Designing
\square Carpenter Foreman	\square Analytical Chemistry	\square Electric Power and Light	POWER	HOME A
\square Reading Blueprints	\square Petroleum-Nat'l Gas	\square Lineman	\square Combustion Engineering	ressmaking
House Planning Plumbing	Pulp and Paper Making Plastics	HIGH SCHOOL High School Subjects	Diesel-Electric Electric Light and Power	Cookery Tea Room Management
Nam	Age_ Home Address			
City	State		Working Hours	A.M. $\mathrm{TO}^{\text {L P.M. }}$
Occupation		Special tuitio coupon to Int	n rates to members of the Armed ernational Correspondence Schools	Forces. Canadian residents send Canadian, Ltd., Montreal, Canada

The IRadio Month

The transistor push-pull output stage. loudspeaker systems, miniature transmitters, parts of electronic computers, and other experimental devices.

The portable TV set was a singlechannel battery-operated receiver with a five-inch screen, no larger than a portable typewriter (12 x $\quad 13$ x 7 inches). With only a built-in loop antenna the 27 -pound receiver produced satisfactory pictures on channel 4 five miles from the Empire State Building. A small "rabbit-ear" antenna boosted its range to fifteen miles.

The experimental receiver has 37 transistors. Its total power consumption is only 14 watts, less than $1 / 10$ th that of a standard table-model set.

An experimental push-button-tuning automobile radio with 11 transistors provided comparable audio output to standard present-day types.

An important feature of this alltransistor set is the elimination of the B supply (vibrator, transformer, and rectifier). The transistors operate directly off the six-volt automobile battery. Total battery drain with the experimental receiver is only one amp (including two pilot lights).

An entirely new kind of audio power
amplifier was also shown. This consists of nothing but the four experimental junction transistors shown in the photograph.

These are pairs of $p-n-p$ and $n-p-n$ transistors in a bridge arrangement, acting as a push-pull amplifier and driving a speaker voice coil directly. Such a device can do the job that now requires two or more tubes, a phase inverter, an output transformer, and other components.

MICROWAVES MAKE MEALS to order in seconds in new Lunch-O-Mat slot-machine restaurant. Radar cooking, developed some years ago by Raytheon Manufacturing Company, is being used successfully for large-scale food preparation on the new S.S. United States and in many hotels and institutions. Refrigerated meats, soups, and beverages are cooked thoroughly in less than 15 seconds, without destroying vital nutritional elements. This appears to be the first successful attempt to use it in a vending machine.
Heart of the Lunch-O-Mat's hot-food section is the hand-size magnetron oscillator shown in the photograph.

COMMUNITY ANTENNAS have reached the stage of big business. A plan under consideration for Vancouver, Canada, would call for an expenditure of $\$ 10$ million. It is being considered as a serious business proposition by Famous Players Canadian Corp., and would bring programs from Seattle and Bellingham, Washington, to residents of Vancouver. Coaxial cable distribution and a coin-meter service is included in the plan. The antenna would be 300 feet high, mounted on high ground near the city.

In Corsicana, Texas, the city commission is considering an ordinance which would grant a 10 -year franchise to a local company for a city-wide TV master antenna system. Tentative charges as proposed would be $\$ 125$ for connection to the system and from $\$ 3.50$ to $\$ 4.50$ a month as rental fee. A central tower high enough to assure the subscribers excellent television reception would be erected.

Latest arrival in the vending machine field is this coin-in-the-slot Radarange.

get your 1953
 FREE
 ALLIED
 236-PAGE CATALOG

it's complete
ir's value-packed

THE WORLD'S LARGEST STOCKS

- TV and Radio Parts
- Test Instruments
- Hi-Fi and P.A. Equipment
- Custom TV Chassis
- AM, FM Tuners \& Radios
- Recorders and Supplies
- Amateur Station Gear
- Builders Supplies

Here's the one authoritative, complete Buying Guide to Everything in Electronics-packed with the world's largest selections of quality equipment at lowest money-saving prices. See the latest in TV custom chassis, TV antennas and accessories; AM and FM tuners and radios; High-Fidelity Custom Sound components; latest P.A. Systems and accessories; recorders; Amateur receivers, transmitters and station gear; specialized industrial electronic equipment; test instruments; builders' kits; huge listings of parts, tubes, tools, books - your choice of the world's most complete stocks of quality equipment.

- Equipment for Industry

QUICK EXPERT SERVIGE

SEND TODAY FOR RADIO'S LEADING BUYING GUIDE
free
 allied gives you every buying advantage; speedy delivery, expert personal help, lowest prices, liberal time payment terms, assured satisfaction. Get the latest 1953 allied Catalog. Keep it handy-and save time and money. Send for your free copy today!

ALLIED RADIO

World's Largest Electronic Supply House

EASY-PAY TERMS

Take advantage of allied's liberal Easy Payment Plan-Radio's best terms-only 10% down, 12 months to pay -no interest if you pay in 60 days. Available on $\mathrm{Hi}-\mathrm{Fi}$ and P . A. units, recorders, TV chassis, test instruments, Amateur gear, etc.

TY \& HI-FI SPECIALISTS

To keep up with developments in TV and High-Fidelity, look to allied! Count on us for all the latest releases and largest stocks of equip. ment in these important fields. If it's a nything in Television or HighFidelity equipment-we have it in stock!

ALLIED RADIO CORP., Dept. 2-A-3 833 W. Jackson Blvd., Chicago 7, Illinois
Name...
Address.
City . Zone., .. State

The stars show quality ascendant in the TV set owner's mind. Follow your stars-give the set owner the best picture tube replacement-Rauland. Your Rauland jobber anticipates your need today with a complete stock. The Rauland Corporation, 4245 N . Knox Avenue, Chicago 41, Illinois. MUlberry 5-5000.

BAULRAND

HIVIIIII II , Here's your Opportunity

 to prepare for a good job or a business

 to prepare for a good job or a business of your own in TV SERVICING

 of your own in TV SERVICING}

There are today more good jobs open in TV Servicing than there are trained and experienced men to fill them. Yes, thousands of opportunities exist now for good-pay jobs offering employment security for years and years to come. Thousands of TV Servicing jobs are going begging. Do you want one of them?

Experts agree, that because of the critical shortage of trained and experienced TV Servicemen, and the tremendous future growth of the industry, no vocational field today offers more opportunities than TV Servicing.

The Big New Industry with a Great Future

Television is just in the beginning stages of its big industrial boom. Look at these amazing facts:

- Lifting the freeze on new TV stations will open many new TV areas and will improve the coverage of existing areas. The result will be an enormous demand for TV receivers.

Within a few years over 1000 TV stations will be telecasting compared with 108 TV stations now on the air

- Nearly one-half of all families living within the present TV areas do not yet own TV receivers.
- The new trans-continental video network plus better and more interesting programs plus larger viewing screens and color TV will increase the installation of new receivers, will induce present owners of 12 -inch and smaller size viewing screens to buy newer model receivers.
- The power increases of many existing stations and improved reception range of current receivers will result in receivers being installed and serviced in the fringe areas of present stations.
- Under the FCC proposal, over 70 per cent of all communities will be served by UHF channels exclusively. This means TV servicemen must know UHF receivers before the new UHF stations in their area are opened.

No one yet knows how great the industrial TV market will be.

RCA Institutes Home Study Course prepares you for a Career in TV Servicing

The addition of the RCA Institutes TV Service Training to your present radioelectronics experience will qualify you to step out and grasp the golden opportunities that now exist in television-Americe's fast est growing industry.

Learn at home-in your spare time-while you study the practical how-to-do-it techniques with how-it-works information. Easy-to-read and easy-to-understand lessons under the supervision of RCA engineers and experienced instructors quickly train you to qualify for the many good jobs now waiting for trained TV servicemen. Don't pass up this lifetime opportunity for financial security and a bright future in TV. Learn TV Servicing from RCA - pioneers and leaders in radio, television and electronic developments.

Send for FREE BOOKLET

Mail the coupon-today. Gel complefe informafion on the RCA INSTITUTES Home Study Course in Television Servicing. Booklef gives you a general outline of the course by units. See how this praclical home sfudy course trains you quickly, easily. Mail coupon in envelope or paste on postal card.

MAILCOUPON NOW!

RCA INSTITUTES, INC., Home Study Department RE-153 350 West Fourth Street, New York 14, N. Y.

Without obligation on my part, please send me copy of booklet "RCA INSTITUTES Home Study Course in TELEVISION SERVICING." (No salesman will call.)

RCA INSTITUTES, INC.
A SERVICE OF RADIO CORPORATION OF AMERICA 350 WEST FOURTH STREET, NEW YORK 14, N. Y.

> RCA Institutes conducts a resident school in New York City offering day and evening courses in Radio and TV Servicing, Radio Code and Radio Operating, Radio Broadcasting, Advanced Technology. Write for free catalog on resident courses.

MOTOROLADETROIT CO.

 one of the country's largest disTributors of television sets and appliancesSAYS

(SIM ID
IS A PROFITABLE ITEM TO STOCK FOR 2 REASONS

"Our customers use Krylon and plenty of it," reports MotorolaDetroit parts manager, Paul Wallace. "The spray nozzle makes it easy to insulate the complete chassis in a matter of minutes." Because of its high dielectric strength, Krylon helps prevent corona.

Indoor service chief, John Workman, reports, "We use Krylon clear plastic coating to spray the bell part of metal picture tubes. Krylon stops dust from adhering to the tube and prevents arcing. We find Krylon is a must in television service operations."

QRM ON CHANNELS 4 AND 5 is being caused by fixed-relay stations in the $72-76$-me band, according to a complaint filed with the FCC by the NARTB and station WCCO-TV, Minneapolis. In asking the Commission to reconsider assignments in the 4 -me nonTV gap between the channels, John M. Sherman, technical director of WCCOTV, cited severe interference over large areas in Wisconsin and Minnesota from police relay stations operating on 73.22 and 74.5 mc .

A SERIES OF SCIENCE FILMS will be shown this fall on national TV network programs sponsored by the American Telephone \& Telegraph Company. The 13 one-hour features will be made for AT\&T by Hollywood producer Frank Capra. First two films to be presented are titled "The Sun" and "The Moon", with cost of production estimated at $\$ 200,000$ each.
U.H.F.-TV SIGNALS give practically the same degree of coverage as v.h.f. signals with the same transmitter power, reports the RCA Victor Division of RCA. Surveys made on KPTV, Portland, Oregon-the nation's first commercial u.h.f. station-show Class A coverage over a 20 -mile radius, assuring good reception to 95% of the city's residents. Outlying districts within 30 to 40 miles of the transmitter get Class B coverage over favorable terrain. These signals reach 88% of the surrounding population, only 6% less than the estimated coverage for v.h.f. transmission. (See also page 62.)

END OF RADIO LICENSE FEES and opening of television field to private broadcasters were demanded by Canada's Liberal Party Council. The $253-$ member Council, in session at Ottawa, voted the demands over the objections of Revenue Minister McCann, who defended the Government's policy of vesting exclusive television rights in the Canadian Broadcasting Corporation

WEST GERMANY'S TV NETWORK now stretches from Hamburg to Cologne, carries two hours of regular programs daily. The NWDR (Northwest German Radio) plans to extend the chain of u.h.f. relay links to southern Germany, and share programs with Dutch and Belgian TV networks, which also use the continental 625-line standard.

THE "TELEPROMPTER," a device which umrolls a prepared script that can be seen only by the speaker, will be available to public speakers, nationally on a rental basis from the RCA Service Company, Inc. First brought to the public's attention at the national political conventions last July, the device feeds the manuscript, in letters an inch high, at a speed suited to the speaker's rate of delivery, and has been used for several years in TV studios. Synchronized multiple installations allow the speaker to move freely around the set or platform without losing sight of the written material.

PRIVATE RADIO-MESSAGE service, already established in New York, Cincinnati, and other U. S. cities, was inaugurated in Cleveland December 15. Subscribers hear personal code signals on vest-pocket receivers pre-tuned to 43.58 mc , then call service office for message. The system is similar to the Air-Call, operated in New York City by Telanserphone, and described in this magazine in October, 1951.

BLASTS AT TV PROGRAMS are no novelty, but Frank P. Walsh of West Hempstead, N. Y., hit the headlines (and the family TV receiver) on October 20 , when he made his with a 38 caliber revolver. Walsh, who works nights as a plant security guard, tried vainly to sleep while his wife, mother-in-law, and five children watched a coast-to-coast comedy broadcast. Finally, because "it was playing too loud," he put an end to the program with one well-aimed shot through the picture tube. His wife called police, but Walsh was not held.

BETTER DRY BATTERIES are now being made by micropulverizing the chemical ingredients with ultrasonic vibrations. The method was invented by George Hunrath of Asbury Park, N. J., and is covered by U. S. Patent No. 2,613,877 . Reducing the particles to the smallest possible size by supersonic agitation increases their chemical activity by exposing more surface to chemical activity.

CANADIAN WIRED-RADIO-TV

 service is being sued for copyright infringement. In a test case, Canadian Admiral Corporation has asked the Exchequer Court to hold Rediffusion, Inc. liable for damages in retransmitting Admiral-sponsored football telecasts without authorization. Rediffusion, Inc. rents radio and TV receivers, and supplies programs over leased wires to subscribers in Montreal.
AUDIO ENGINEERING SOCIETY elected the following new officers at its

 recent convention in New York City: president, F. Sumner Hall, F. Sumner Hall, Inc.; executive vice-president, Jerry B. Minter, Measurements Corp.; central vice-president, Walter S. Pritchard, Ohio Bell Telephone Co.; western vice-president, Richard L. Burgess, Allied Recording Mfg. Co.; secretary, C. J. LeBel, Audio Instruments Co., Inc.; treasurer, Ralph A. Schlegel, WOR Recording Studios; governors, Price E. Fish, Columbia Broadcasting System; Jay H. Quinn, Fairchild Recording Products Corp.; Carleton H. Sawyer, Bell Telephone Laboratories.
BLACKMAILING TV-CHANNEL

 applicants is a new racket reported from Washington. The blackmailer threatens to file a competitive application for an unopposed channel assignment unless paid off in cash or with an interest in the station. This new variation on the old shake-down theme is blamed on the shortage of FCC examiners to handle contested applications without delay.END

"TV Servicing Short-Cuts Bused on Actual Case Histories"

 shows you how to solve commonly recurring troubles
the book that really teaches fast, expert service techniques
This book describes a series of actual TV service case histories, each presenting a specific problem about a specific receiver. The symptoms of the trouble are described and then followed by a step-by-step explanation of how the service technician localized and tracked down the defect. Finally, there is a detailed discussion of how this particular trouble can be tracked down and solved in any TV set. The discussions which follow each case history are in-valuable-they explain how to apply the proper time-saving servicing techniques to any TV receiver. Here, in one volume, is the successful experience of experts-to make your service work easier, quicker, more profitable. Over 100 pages, $51 / 2 \times 81 / 2^{\prime \prime}$, illustrated. Pays for itself on a single service job. ORDER TK-1. Only.
$\$ 1.50$

HHOW 10 UNDERSTAND AND USE

 TV TEST ANSTRUMENTS"
shows you how to get the most from your test instruments
Provides basic explanations of how each test instrument operates; describes functions of each control and shows their proper adjustment to place the instrument in operation. Covers: Vacuum Tube Voltmeters, AM Signal Generators, Sweep Signal Generators, Oscilloscopes, Video Signal Generators, Field Intensity Meters, Voltage Calibrators. Describes each in detail; explains functions; tells proper use in actual servicing; shows how to avoid improper indications. Because this book gives you a clear, complete understanding of your test instruments, you get more out of them, save time, and add to your earning power. Over 175 pages, $81 / 2 \times 11^{\prime \prime}$, illustrated.
ORDER TN-1. Only
$\$ 3.00$

HOWARD W. SAMS \& CO., INC.

[^0]

BAROMETER of the PARTS INDUSTRY
During November, 50 of the leading 400 manufacturers of Radio-Television-Electronic parts and equipment made changes in their lines. Actually there was a decrease in "change activity" as compared to October. In price revisions by the number of manufacturers and products affected, the following summary illustrates the comparative trend for the months of O-tober and November.

	No. of Manufacturers	
	October	November
Increased prices	13	16
Decreased prices	11	7

	No. of Products	
	October	November
Increased prices	is	204
Decreased prices	49	136

For a summary of the most active product categories, see the following table:

Product Group	Increased Prices		Decreased Prices		New Products		Discontinued Products	
	No. of Mfrs.	No. of Products	No. of Mfrs.	No. of Products	No. of Mfrs.	No. of Products	No. of Mirs.	No. of Products
Antennas \& Acces.	2	12**	3	120*	7	124**	6	102*
Capacitors	0	0	0	0	2	4s**	0	0
Conntrols \& Resistors	0	0	0	0	1	1**	1	4*
Sound \& Audio Prod.	2	10*	2	2*	6	61**	7	113*
Test Equipment	4	6^{*}	0	0	2	$5 *$	1	2**
Transformers	1	36*	0	0	5	57*	1	13*
Tubes	5	49*	1	5**	11	44**	4	14*
Wire \& Cable	2	91*	1	1*	2	11**	0	0
* Increase over October ** Deerease from October					* Increase over October ** Derrease from October			
Comment: There is an apparent trend toward increased prices by the leading TV Tube Manufacturers. While "change activity" continues to center around the introduction of new items, it is noticeable at this time that there is a decrease in the number of manufacturera involved.								

This data is prepared by the staff of Inited Catalog Publishers, Inc., 110 Lafayette Streef, New York, publishers of RADIO'S MASTER, the Official Buying Guide of the Parts Industry.

Merchandising and Promotion

P. R. Mallory \& Co., Inc., Indianapolis, is backing up its u.h.f. converter sales with an aggressive promotion campaign. The merchandising plan includes a consumer product display, colorful banners, and envelope stuffers. Newspaper mats are also available in addition to suggested news releases for local news-

papers. The entire campaign has been tied together by advertising in consumer and trade publications.

Alliance Manufacturing Co., Alliance, Ohio, has prepared a series of oneminute TV spot film commercials in co-operation with its advertising agency, Foster \& Davies, Inc., Cleveland. The commercials demonstrate the new Alliance Cascamatic booster which mounts out of sight on the back of the TV set, is pretuned to all v.h.f. stations and requires no manual controls.

Jensen Industries, Inc., Chicago, has prepared a new replacement phonograph
needle wall chart designed to simplify the work of the service technician and record dealer. The unique guide also aids in inventory control and shows authorized needle substitutions. The chart is available either directly from Jensen Industries or from its distributors.

The Sylvania Television Picture Tube Division, Seneca Falls, N. Y., is shipping its TV tubes for renewal sales in

a new factory-sealed carton which provides easy and safe handling. The new carton also adds an attractive note when displayed in service technicians' shops.

Allen B. Du Mont Laboratories, cathoderray tube division, Clifton, N. J.,

YOU LEARN SERVICING

by practicing with equipment I furnish

TELEVISION is Today's Good Job Maker

In 1951 over 15,000,000 homes had Television sets, more are being sold every day. 108 TV stations are already operating, over 1800 are now authorized and many hundreds are expected to be on the air in 1953. This means new jobs, more jobs and better pay for trained men. The time to act is NOW! Start learning Radio-Television servicing or communications. Want to get ahead? America's fast growing industry offers good pay, a bright future and security. Cut out and mail card now. J. E. Smith, President, Nationsl Radio Institute, Washington, D.C. Sample Lesson \& 64-Page Book Both FREE
This card entitles you to Actual Lesson on Servicing, shows how you learn Radio-Television at home. You'll also receive my 64-Page Book, "How to Be a Success in Radio-Television." Mail card now!

NO STAMP NEEDED! WE PAY POSTAGE

Mr. J. E. SMITH, President,

National Radio Institute, Washington 9, D.C.
Mail me Lesson and Book, "How to Be a Success in RadioTelevision." (No Salesman will call. Please write plainly-)

NAME
AGE
ADDRESS.
CITY

YOU LEARN COMMUNICATIONS

by practicing with equipment I furnish
As part of my Communications Course I send you kits of parts to build the low power broadcasting transmitter shown at right and many other circuits common to Radio and Television. You use this equipment to get practical experience putting a station "on the air," performing procedures demanded of Broadcast Station operators. I train you for FCC Commercial Operator's License. Mail Card for Sample Lesson and 64-Page Book. FREE!

There are Good Jobs, Good Pay, Success in Radio-TVI SEE OTHER SIDE

America's Fast Growing Industry

Do you want good pay, a job with a bright future, security? Would you like to have a profitable business of your own? If so, find out how you can realize your ambition in the fast growing RADIO-TELEVISION industry. Even without Television, the industry is bigger than ever before. 105 million home and auto radios, 2900 Radio Broadcasting Stations, 108 TV Stations with 1800 more now authorized. Expanding use of Aviation and Police Radio, Micro-Wave Relay, Two-Way

NRI Training Can Lead to Jobs Like These in RADIO-TELEVISION	
Chief Technician Chief Operator Recording Operater Remote Control Operolor	government radio
	Operotor in
	, Morine ${ }^{\text {cher }}$
SERVICING	
Home ond Aulo Rodiat P.A. Syeteme Television Recelvers Electronic Controls FM Radios	viation rad
	Plane Radio O
IN radio plants Design Assitiont ronsmilter Design Technicion Service Manager Tester Sorvicoman Reseorch Asuitatant	televisio
	Volce Trant mil
SHIP AND HARBOR RADIO	Mechinicion
Chief Operator Asiziant Opurotor Rodiotelephone	

Radio for buses, taxis, etc., are making opportunities for Servicing and Communications Technicians and FCC Licensed Operators.

You Learn by Practicing with Kits I Furnish

With both my Servicing Course and my NEW Communications Course I send you many Valuable Kits of Parts. They "bring to life" theory you learn in my illustrated texts. Mail card for my big 64 -page book. It shows photos of equipment you build from kits I send.

My Troining Includes Television

Both my Servicing and Communications Courses include lessons on TV principles. Yoư get practical experience by working on circuits common to both Radio and Television. My graduates are filling jobs, making good money in both Radio and Television. Remember, the way to a successful career in Television is through experience in Radio.

Send NOW for 2 Books FREE

Mail the Postage-Free Card NOW!
What will YOU be doing one year from today . . . will you be on your way toward a good job of your own in a Radio and Television service shop or business? Decide now that you are going to know more and earn more! ACT NOW! Take the important first step to a career and security. Send the postage-free card now for my FREE DOUBLE OFFER. You get Actual Servicing Lesson. Also my 64 -page book, "How to Be a Success in Radio-Television." Read what my graduates are doing, earning; see equipment you practice with at home. Mail card now. J. E. SMITH, President, National Radio Institute, Washington 9, D.C. Our 39th year.

J. E. Smlth, President

 National Rodio InstituteThe men whose letters are published below were not born successful. At one time they were doing exactly as you are doing now... reading my ad! But they acted. They decided they would know more Mail the card how for my 2 books FREE.

I TRAINED THESE MEN

Mandicopped
but Successful
'I am now Chief Enulleft hat WHAW My of at the wrist. A mancath do.
if he wants to. salley, Weaton, W. V.

Control Operator,
Station WEAN
I recelved my license. and worked on shlpme
Now with WEAN ais Now With WEAN as course ls complete." R.
Arnold, Rumford, R.

Mos Growing Business
Am becoming expert Teletmelan as weel as
Radiotrician. Without our couran. Without be Impossible. P.

$\$ 10$ o Weok Before fintshtag, earned as much as $\$ 10$ ing, in my spare time. recommend NRI' ${ }^{\prime}$. Petrunt Miarni, Fia

Troined Men Make Money In TV "Il anl now servicins enabled me to course TV recelvers wholiout any \& rouble, $\quad R$.

Gat Mirst Job Thru NRI My tirst job was with KDgr. of Naw Chie ment for Police ind Fire Dept." T. Norton
Hamilon, Ohio.

Find Out What RADIO-TV Offers You

YOU LEARN SERVICING

by practicing with equipment I furnish

You build valuable Multitester (at left) as part of my Servicing Course. You use it to make many tests, get practical experience, make EXTRA money fixing neighbors' radios in spare time. Many of my students earn $\$ 5, \$ 10$ a week extra while learning. I send you many other kits too. You build a modern Radio. You build many circuits common to Radio and Television. All equipment is yours to keep. Read about and see other equipment in my free book. Mail card below.

TELEVISION is Today's Good Job Maker

In 1951 over $15,000,000$ hames had Television sets, more are being sold every day. 108 TV stations are already operating, over 1800 are now authorized and many hundreds are expected to be on the air in 1953. This means new jobs, more jobs and better pay for trained men. The time to act is NOW! Start learning Radio-Television servicing or communications. Want to get ahead? America's fast growing industry offers good pay, a bright future and security. Cut out and mail card now. J. E. Smith, President, National Radio Institute, Washington, D.C.

CUT OUT AND MAIL THIS CARD NOW

 Sample Lesson \& 64-Page Book Both FREEThis card entitles you to Actual Lesson on Servicing, shows how you learn Radio-Television at home. You'll also receive my 64-Page Book, "How to Be a Success in Radio-Television." Mail card now!

NO STAMP NEEDEDI WE PAY POSTAGE

Mr. J. E. SMITH, President,
National Radio Institute, Washingion 9, D.C.
Mail me Lesson and Book, "How to Be a Success in RadioTelevision." (No Salesman will call. Please write plainly.)

NAME
AGE

ADDRESS

America's Fast Growing Industry

Do you want good pay, a job with a bright future, security? Would you like to have a profitable business of your own? If so, find out how you can realize your ambition in the fast growing RADIO-TELEVISION industry. Even without Television, the industry is bigger than ever before. 105 million home and auto radios, 2900 Radio Broadcasting Stations, 108 TV Stations with 1800 more now authorized. Expanding use of Aviation and Police Radio, Micro-Wave Relay, Two-Way

NRI Training Can Lead to Jobs Like These in RADIO-TELEVISION	
broadcasting	government radio
Chief Technician Chief Operator Power Manitar Recording Operator Remote Control Operatar SERVICING	Operator in Army. Navy, Marine Corps, Coast Guard Forestry Service Dispatcher Airways Rodio Operator
Home and Auto Radios P.A. Systems Television Receivers Electronic Controls FM Rodios	aviation radio Plone Radio Operator Transmitter Technician Receiver Technician Airport Transmitter Operator
IN RADIO PLANTS Design Assistant Transmifter Design Technician Service Manoger Tester Servicemon Reseorch Assislont	TELEVISION Pick-up Operator Volce Transmitter Operator Television Technicion Remate Control Operator Service and
SHIP AND HARBOR RADIO	Maintenance Technician
Chiel Operator Assistant Operator Rodiololephone Operafor	POLICE RADIO Transmitter Operator Receiver Serviceman

Radio for buses, taxis, etc., are making opportunities for Servicing and Communications Technicians and FCC Licensed Operators.

You Learn by Practicing with Kits I Furnish

With both my Servicing Course and my NEW Communications Course I send you many Valuable Kits of Parts. They "bring to life" theory you learn in my illustrated texts. Mail card for my big 64-page book. It shows photos of equipment you build from kits I send.

My Training Includes Television

Both my Servicing and Communications Courses include lessons on TV principles. Yoử get practical experience by working on circuits common to both Radio and Television. My graduates are filling jobs, making good money in both Radio and Television. Remember, the way to a successful career in Television is through experience in Radio

Send NOW for 2 Books FREE Mail the Postage-Free Card NOW!

What will YOU be doing one year from today . . . will you be on your way toward a good job of your own in a Radio and Television service shop or business? Decide now that you are going to know more and earn more! ACT NOW! Take the important first step to a career and security. Send the postage-free card now for my FREE DOUBLE OFFER. You get Actual Servicing Lesson. Also my 64-page book, "How to Be a Success in Radio-Television." Read what my graduates are doing, earning; see equipment you practice with at home. Mail card now. J. E. SMITH, President, National Radio Institute, Washington 9, D.C. Our 39th year

FIRST CLASS
Permit No. 20-R
(Sec. 34.9, P.L. \& R.)
Washington, D.C.

BUSINESS
 REPLY
 CARD

No Postage Stamp Necessary If Mailed In The United States

4c POSTAGE WILL BE PAID BY
NATIONAL RADIO INSTITUTE
16th and U Sts.,N.W.
Washington 9, D. C.
J. E. Smith, President

National Radio Institute
The men whose letters are published below were not born successful. At one time they were doing exactly as you are doing now... reading my ad! But they acted. They decided they would know more . . so they could earn more! They acted! Mail the card now for my 2 books FREE.

I TRAINED THESE MEN

Mandicapped but Successful I am now Chiet Engileft hand is off at the wrist. A man can do. Halley, Weston. w. Vn

Control Operator
Station WEAN
I recelved my license and worked on shlips. Now with WEAN as
control operator. NRI course is complete. NR

Hos Growing

 Business"Am becoming explert Radlotrician. Without your course this would Brogan, Loulsvilie. Ky.

$\$ 10$ a Wook In Spare Time "Before finishing, I earned as much as $\$ 10$ ing, in $m y$ spare time. recommend NRII":

Trained Men Make Money In TV "I ath now servicing enabled me to repair TV receivers whout any trouble...
Curtier, Fair Haven,

Gop Firar Job Thru NRI "My first job was with Engr. of Radio Equip ment for Police and Haniliton, Ohia. Norton

Find Out What RadIO-TV Offers You

For faithful tone reproduction... high fidelity at low volume level - use Centralab's Compentrol

Centralab components are safest for guaranteed servicing

YOU can stake your service reputation on the Centralab Compentrol. 'That's because this combination volume control and Printed Electronic Circuit faithfully reproduces the high-pitched tones of the operatic soprano or the deep bass notes of the boogie woogie beat . . . when volume is set at low level.

In fact, Compentrol was especially developed to better reproduce the apparent bass and treble response of radios, audio amplifiers, phonograph combinations and television sets. Use it as a business builder as well as for replacement service. It actually improves original performance! What's more, its low price will fit any pocketbook.

Because of its design CRL's Compentrol needs no additional amplification. There is no insertion loss when you use Compentrol.

The Centralab Compentrol is furnished in $1 / 2$ or 1 meg. -plain or switch types. Switch is SPST, and an insulated switch shield is furnished for a-c shielding. Most amplifiers use a plain type. For complete details, ask your Centralab distributor, or use the coupon.

> Make your Centralab distributor
> headquarters for
> exact electronic replacements

Centralab

A Division of Globe-Union Inc. Milwaukee 1, Wisconsin
In Canada, 635 Queen Street East, Toronto, Ontario
The Centralab Compentrol is only one of the more than 470 new itenis listed in Centralab's new Catalog 28 . Get your copy of this 32 -page index to electronic field, plus a 16 -page booklet telling the whole Compentrol story. See your distributor or use the coupon.
\qquad

reported its recent Tele-Mirror promotion as one of the most successful yet undertaken by the Division, according to Edwin B. Hinck, sales manager for the Replacement Sales Department of the division. Based on the success of this campaign, similar promotions directed to the service technician will be forthcoming.

Cornell-Dubilier Electric Corp., South Plainfield, N. J., is giving away a useful clear plastic compartment case with the purchase of each of six new C-D Twist Prong Capacitor Kits. The see-through

Merit's TV full-line offers the most complete line possible for universal replacement plus exact replacements where required. A new Merit TV Replacement Guide No. 405including universal components and exact replacements for over 6000 models and chassis-can be obtained from your Jobber or by writing: merit coil and transformer corp., 4425 N. Clark Street, Chicago 40.

Merit IF-RF Coils include a complete line of TV replacements.
compartments are ideal for storing screws, tubes and small parts of all kinds.

Allied Radio Corp., Chicago, in cooperation with the American Radio Relay League, distributed a free booklet, "You Can Be There," to radio clubs, classes, and other groups of radio or electronics students or hobbyists. The booklet tells the story of the romance which amateur radio operation offers young men.

RMS (Radio Merchandise Sales), New York City, conducted another in its series of forums for TV service technicians in Portland, Ore. The forum, which was co-sponsored by Pacific Stationery and Central Distributors, TV parts distributors, and arranged by the Burt Porter Co., RMS representative in the Pacific Northwest, emphasized u.h.f. antenna problems.

Production and Sales

The RTMA reported that $3,670,591$ TV sets and $6,689,535$ radios were produced during the first nine months of 1952. The association pointed out that September, 1952, production of 755,665 TV sets was 124% over industry output for September, 1951.

Shipments of receiving tubes by members of the RTMA totaled $34,196,286$, valued at $\$ 24,432,747$, a substantial increase over shipments for the previous month and for September, 1951. During the first nine months of $1952,245,689$, 629 tubes were shipped, compared to
$280,795,338$ during the 1951 period.
General Electric Tube Department's manager of marketing, E. P. Peterson, Schenectady, predicted production of $6,200,000 \mathrm{TV}$ sets during 1953 , the highest since the record year of 1950 . He said that $435,000,000$ receiving tubes would be produced during 1953, as compared with an estimated total of 375 ,000,000 for 1952.

Westinghouse Television-Radio Division plant at Sunbury, Pa., reported an unprecedented high in employment and production figures. Employment figures were running 28% over the similar period of 1951; production topped last year's figures by 35%.

New Plants and Expansions

CBS-Hytron, Danvers, Mass., is constructing an addition to its TV picture tube plant and large warehouse for TV picture tubes at Newburyport, Mass. The additions will enable the company to handle the production of 24- and 27inch picture tubes in volume. The company expects that the construction of the new buildings will be completed by the middle of 1953 .

Clarostat Manufacturing Co., Ince, Dover, N. H., opened an additional plant in the Chicago area. The new plant, now in operation, was purchased so that the company would be in a better position to serve its Midwest and Western customers.

Raytheon Manufacturing Co., Waltham, Mass., is constructing a new $\$ 2,000,000$ electronics laboratory in Bedford, Mass., designed to be one of the most modern and efficient of its kind. The new building is being constructed by Raytheon for the Navy and will be used by the company as a research and development center.

General Electric is now producing u.h.f tuners for its TV sets at its Receiver Department plant, Auburn, N. Y. One hundred and fifty employees were added to the payroll to handle this new production.

General Cement Manufacturing Co., Rockford, Ill., opened new warehouse facilities in Los Angeles to provide West Coast parts distributors and service technicians with better service and faster deliveries.

Synthane Corp., manufacturer and fabricator of laminated plastics for industry, added a two-story brick wing to its plant at Oaks, Pa. The new wing marks the eleventh plant expansion since the company's original factory was built.

Hammarlund Manufacturing Co., New York City, leased an additional 12,000 square feet of space at 541 W. 34th Street.

Radio City Products Co., New York City, moved all its test equipment production facilities to its Easton, Pa., plant. The Engineering, Sales, and Purchasing Departments and the general offices will remain in New York City. Walter Jonas, production manager, will direct operations at both plants. Burt Levy was appointed sales manager of the Jobber and Industrial Division. END
 new tubes. You may think you'll save a little money but you could lose your good reputation. Play it safe. Use the tubes that are given 101 rigid quality tests and checks to insure their electrical and mechanical perfection...

(AAYTHEOL

TELEVISION PICTURE TUBES

These brand new tubes, the precision products of a multi-million dollar corporation, are creating satisfied customers with their superb performance wherever they are installed. And this quality performance is enhancing the reputation of the Service Technicians who install them. Protect your future with RAYTHEON TV PICTURE TUBES.

Use RAYTHEON TELEVISION PICTURE TUBES

They're Right for Sight . . . and Right for You . . . and Always New !

[^1]

Only Sylvania tubes showed NO FAILURES after 1400 hours . . . at accelerated voltages

Exhaustive tests conducted under the supervision of an outside impartial laboratory, the United States Testing Company, showed Sylvania Picture Tubes lasted longer than any others tested.

These tests included the picture tubes of nine leading manufacturers. All tubes were placed in identical test racks and tested under identical accelerated voltages. At the end of 1400 hours. only the Sylvania

Picture Tubes showed no failures. These tests definitely establish the outstanding dependability of Sylvania Picture Tubes. They prove that these tubes will best uphold your reputation for fine performance in the sets you manufacture, sell or service. Send today for complete details about Sylvania Picture Tubes. Sylvania Electric Products Inc., Dept. 3R-1701, 1740 Broadway, New York 19, New York.

 MORE ARE YOU AT HOME IN YOUR SPARE TINE

TRAINING TO FIT YOU FOR THE BETEER PAY JOBS
Thousands of new johs will open up right in your own state, nuw that the guvernment has lifted restriethons on niew TV stations. My simple, successful methods have heiped hundreds of men - most of them with NO PREVIOUS TRAINING find places in Americe's burming TELE. vision and filectronies industries. You tuo can get the success and happiness you always wanted out of life within months...studying at home...as I train you u hecome a full-fledged TV THCHNICIAN. Many of my students make as much as $\$ 25.00$ a week repairing Radiu-TV sets in their spare time while learning... pay their entire training al most from the very heginning from spare time earnings.. start their own proftabie service business. But 1 dun't stop after 1 qualify you as a TV Technician. . although right there fascinating chouse from among dozens of fascinating careers! ' continue to train for even better pay in the BFTTHu 108 s for even better pay in the BFTTFR JOBS

FREE FCC COACHING COURSE PREPARES YOU AT HOME FOR YOUR THE BEST JOBS IN TV ANO RAOIO
REQUIRE AN FCC LICENSE. Given at No EXTRA COST affer TV Theory and Practice is completed

NOW! advanced

 FM-TV TRAININGIf you have previous Armed Forces o civilian radto expertelice-my ADVANCED COURSE can save you months of training. Full theory and practical training. complece with kits, including BIG SCREEN TV RECEIVER and FREE FCC License Coaching Course.

FREE EMClotment ASSISTANCE

My vocational adviser will help you obtain a good-pmying lob in the locality of

RADIO-TELEVISION TRAINING ASSOCIATION
1629 Broadway, Radio City Station, New York City 19, N. Y. LICENSED BY THE STATE OF NEW YORK

MORE value!

YOU GET A ROUND TRIP TO NEW YORK CITY AT NO EXTRA COST
FROM ANYWHERE IN THE U.S. OR CANADA - I pay your way to New York and return, PLUS 2 FREE weeks, 50 hours of advanced SCHOOL OF RADIO \& TELEVISION use modern electronics equipment, including student-operated TV and Radio stations. You go behind the scenes of New York's big Radto-TV centers, to study firat hand. And 1 give you all this AT NO EXTRA COST! (Applles to complete Radio-TV course only.)

Only RTTA makes this amaxing offer.

GRADUATES GOOD PAYING JOBS

"Thanks to your training, I
quallifed for a good job gis a
Recelver Tester at Federal Tele-
phone and Radlo." Fioul Erank seier

"'I'm making good money in my own business, repairing and In. thanks to your training.

Your excellent Instruction helped me get my present job as an can Airlines. - Eugene E, Basko

"rill always be grateful to your training which helped me get my present fne po

- Norman Weston

Many others working at NBC, RCA, CBS oumont, Philco, Emerson, Admiral and

VETERANS! 豪泼

MY SCHOOLS FULLY APPROVED TO TRAIN VETERANS UNDER NEW G.I. BILl! If discharged after June 27, 1950 - CHECK COUPON BELOW: Also approved for RESIDENT TRAINING in New York City ... qualifies you for full subsistence allowance up to $\$ 160$ per month.

MAIL COUPON TODAY! BOTH FREE! New Illustrated Book and Sample Lesson. Learn How My Simple Method Succe Easy!

IMPORTANT NOTICE!

*Changes in television demand changes in present antennas! New UHF and VHF stations mean more channels! Current FCC rulings have assigned channel changes to nearly one-third of all VHF stations. This makes single-channel antennas and other fixed position antennas obsolete! Prepare now. Meet the coming changes in television with ALLIANCE TENNA-ROTOR.

Sold by
 TV Dealers Everywhere

URRD antennas have all the UHF-VHF answers!

UHF only for old installations Add it to present VHF installations and you have a
 complete UHF-VHF Antenna . . . covers all UHF channels with high gain . . small, neat and preassembled. JAZZ TROMBONE is the first new UHF only antenna . . . an exclusive WARD development.

UHF-VHF for new installations

brings in all-channels, all-frequencies - both VHF and UHF-with one single Antenna... the completely universal WARD TROMBONE. For new installations nothing compares with WARD TROMBONE.
This brand new WARD item completely solves the problem
of lead-in lines, where separate UHF and VHF Antennas
are employed. Simply attach the two lines to THE DIPLEXER
and extend one single line from the DIPLEXER to the TV
receiving set.

1148 Euclid Avenue - Cleveland 15, Ohio in Canada: Atlas Radio Corp., LId, Toronto, Ont.

You Build EICD Kits in One
Evening, but . . . They last a Lifetime! and You SAVE OVER 50\%
YOU be the judge. See the famous EICO line TODAY - in stock at your local jobber and SAVE!

E/CD new modern facilities for research, development and production-your greater assurance of...

OVER I/4 MILLION EIFDINSTRUMENTS in use the world over! New 536 multimeter KIT $\$ 12.90$ WIRED $\$ 14.90$ I, $000 \Omega / \mathrm{v} ; 31$ ronges

1040K BATTERY ELIM KIT $\$ 25.95$ WIRED $\$ 34.95$

- Accuracy: $\pm 3 \%$
I171K RES. DECADE 8OX
- Sine Wave Range: 20-200,000 cps in 4 bands - Square Wave Range: $60-30,000 \mathrm{cps}$
- Freq. Response: $\pm 1.5 \mathrm{db}, 60 \mathrm{cps}-150 \mathrm{kc}$.
- Output Voltage: 10 volts across 1000 ohms (rated load); 14 volts across 10,000 ohms; 8 volts across 500 ohms
- Disfortion: less than 1% at rated output (100 mw)
- Hum: less than 0.4% of rated output - Clear, three-dimensional drawings and simplified WIRED \$49.95

New sosk multimeter KIT $\$ 24.95$ WIRED $\$ 29.95$ $20,000 \Omega / \mathrm{v}$; 31 ranges

R 49.95

CRA PIX TUBE ADAPTOR for Tube Tester $\$ 4.50$

Write NOW for FREE newest Catalog 1-CA.

America's greatest instrument values bear the name-

See EICO's other ad on Inside Back Cover of this magazine. ELECTRONIC INSTRUMENT CO., Inc., 84 Withers Street, Brooklyn 11, N. Y.

जाजत

Vital new developments in television . . .

By HUGO GERNSBACK

|T NOW BECOMES apparent that television, as far as entertainment is concerned, will take a distinctively new road in the near future. With a few exceptions, radio broadcasting in the past made it possible for listeners to receive almost every imaginable program that could be broadcast. (These few exceptions were primarily major prize fights which were not broadcast because the promoters felt that their gate receipts would suffer.)

With television, broadcasting no longer is blind. The promoters of sports, Broadway shows, operas, and similar events are convinced that television would be a far-toopowerful competitor if such entertainment were broadcast free of charge.

I foresaw this situation 20 years ago in an article entitled "The Tele-Theater" in the January-February 1932 issue of my former publication, TELEVISION NEWS. This situation was amplified in an editorial entitled "The TeleTheater" in the January 1951 issue of Radio-Electronics. It is now no longer news that recently important sports events have been televised exclusively to theater chains in various parts of the country, where admission is charged to view the event.

As this issue of Radio-Electronics goes to press, the first closed circuit telecast of Metropolitan opera is about to be shown in a number of theaters in the U.S. (December 11th.)

To expand its activities, as well as its income, the Metropolitan Opera Association, Inc. arranged to have the entire opera "Carmen" broadcast in conjunction with the Theatre Network Television, Inc. This particular telecast runs for more than three hours, and takes in the entire opera from beginning to end. Over 30 theaters in the principal cities from coast to coast signed up as participants in this trial event. The price scale in each theater was determined by local management, but it was stressed that the tickets were sold at reasonable prices. The Metropolitan Opera Association, Inc. shares in the returns from the theaters on a percentage basis.

It appears certain that important Broadway plays will soon follow this innovation. The trend is bound to follow this particular pattern, and it looks as if the teletheater is with us to stay, for a long time to come.

At present it would probably not pay sponsors to offer free broadcasts to the televiewing public of Broadway plays, grand opera, and other important entertainment events. It will be possible, however, in the future, when there are as many television sets as radio receivers in the country.

The question has been frequently asked: "Where does the private television set owner fit in this type of arrangement?" At the moment he simply is not being considered at all, for the simple reason that the new trend is away from broadcast television. It is a private endeavor of a group of entrepreneurs bent on filling their theaters which have been more or less emptied by the terrific competition of broadcast television.

Fortunately, the television owner may not always be barred from seeing a Metropolitan Opera broadcast, or a

Broadway play broadcast, in his own home. Once more science is coming to the rescue. Indeed, it may be quite possible that in a few years a television owner may not have to go to his local theater to see an important Metropolitan Opera. My editorial, "Magnetic Tape TV Recording," in the November 1952 issue of Radio-Electronics, pointed out that it will soon be possible to record television programs on a magnetic tape. When the final bugs have been eliminated, the way will be open for a central distributing agency to sell magnetic television recordings or rent reels of important productions-the Metropolitan Opera included-to everybody in the land. All that the home television owner will need is a special television tape reproducer which can be put on top of or near the television receiver and connected to its circuits without disturbing it. Then by merely pressing the switch the recording will reel off and the action will appear on the screen.

It should be possible to mass-produce the magnetic tapes at a reasonable price so that play or opera performances can be sold or rented at a reasonable rate. Quite possibly Broadway producers and opera companies will realize even more money thus than from theater television. If only 25% of the television set owners would subscribe to the tape service, it would work out to a very substantial figure, exceeding the amount paid by the theaters many times. At this moment it is anyone's guess how much the magnetic tape reels will be sold or rented for.

Naturally, the television set owner still would have to pay a fee to participate in such an entertainment setup, but it is quite probable that most people would not object to this.

In the meanwhile, new owners of television sets will have little to complain about because the price of television receivers is continuously going down. This is also a welldefined trend. Already several of the large television manufacturers are selling high-grade 21 -inch-screen sets below $\$ 200$, which is an important reduction from former price levels for similar sets.

Indeed, the lower prices will probably continue for quite a while. With new engineering techniques, such as transistors, appliquéd-the so-called plated-circuits, it will be possible in the future to make still greater price concessions. The reason is that in television sets the labor cost is a very appreciable portion of the total manufacturing cost of the receiver. With the appliqued circuits, the cost can be reduced still more. It therefore would appear that $21 "$ screen and larger sets selling around $\$ 150$ and less are not at all impossible within the next few years.

This trend is in the right direction because it paves the way for color television. At one time it was thought that a good color television receiver would cost between $\$ 400$ and $\$ 500$, but in the light of new techniques it would appear that when and if color television sets are marketed, they will probably sell for between $\$ 200$ and $\$ 250$, and perhaps even lower.

Most likely these sets will also include magnetic tape equipment to view-at a cost-Broadway shows, operas and other closed circuit features not normally broadcast.

The author, left, congratulates Victor Bary on the record Portland installation.

MOMENTOUS events, of deep significance to the readers of Radio-Electronics, are taking place in television. In the May, 1952, issue, an article by this author outlined the "TV Pattern for the Future", based upon events, developments, and trends immediately prior to the lifting of the television freeze. That long-awaited event is now history, and already the Federal Communications Commission is well advanced on its program of authorizing television station construction permits. Initiation of TV service in scores of communities is now imminent, millions of new receiver installations will be necessary, and the readers of these pages will be vitally concerned with the installation and servicing o_{+}^{*} these receivers. It is again timely to look to the present and ruture responsibilities and opportunities placed before you.

Following a number o? years of basic research and investigation of u.h.f. wave propagation and the development of tubes and circuitry, the Radio Corporation of America and the National Broadcasting Company on December 29, 1949, placed in operation in the Bridgeport-Stratford (Connecticut) area their historic experimental station KC2XAK, the u.h.f. pathfinder for the industry. On August 23, 1952, this station signed off for the last time. Within four days, the antenna, tower, and apparatus had been completely dismantled and were on the way to Portland, Oregon.

Within 60 hours of its arrival at Portland, it had been installed on a hilltop site recommended by this writer and was ready to render the first TV broadcast to Portland. Within a few days the FCC granted special temporary authorization for the service to start and thus the Bridgeport veteran transmitter embarked on a new career in virgin territory as the world's first commercial u.h.f. TV station, bringing TV for the first time to nearly 1,000 ,-

[^2]000 people. Only about three weeks from the time the apparatus was signed off at Bridgeport, it began commercial operation in a city 3,000 miles away.

The excitement and impact of this momentous event in Portland and throughout the industry beggars description. Transcending all other topics of local conversation and news, it established a precedent which others will strive to equal, perhaps in your community. Coming unexpectedly soon, the rush to acquire receivers and converters sparked off crash programs among the manufacturers, distributors, dealers, and sexvice companies to rush equipment to the area and meet the demand. During the first three months of TV service in Portland, it was anticipated that at least 60,000 receivers would be purchased and installed without substantially blunting the sharp edge of the feverish demand. In one large store alone, a million dollars worth of receivers were sold in 10 days and list prices are the order of the day.

What happened in Portland may happen in your community. The press and radio gave almost hourly bulletins on the activities at Council Crest Park where the new TV station was being built. Local columnists speculated with every new edition as to the probable opening date for the station. A cor-test was held-with a new TV set as a prize-for the citizen who most closely guessed the day, hour, and minute that the station would officially open. People from all over the area flocked by the thousands to the transmitter site to see their first TV station being built. All available parking space was filled and workmen engaged in the project in some cases had to park a quarter of a mile from the site. During the early afternoon hours a police detail was assigned to the area to regulate traffic and at times had to conduct sightseers in large groups on 20 -minute cycles to give all of the sidewalk superintendents a view of the proceedings.

TV's debut in Denver was equally exciting. Eleven days after the FCC
started on July 1 to make post-freeze grants, a construction permit was issued to KFEL-TV. Only one week later special temporary authority was granted by the FCC to begin telecasting, which was inaugurated within three days with an immediaiely available v.h.f. 500 -watt RCA transmitter.

Television service thus has come with startling rapidity to the two largest markets heretofore without it. The imagination and enterprise which accomplished it will also bring ic to many other communities in like manner. It is to your interest to keep informed and be prepared to take advantage of the opportunities it may present to you.

FCC processing procedure

When will your community reccive TV service or an extension of your preser.t service? Unfortunately it is not possible to publish an explicit timetable. But it is possible to inform you of trends and possibilities.

When preparing its Sixth Report and Order (the TV thaw-out) of April 14, 1952, the Commission was faced with a truly monumental task in processing the hundreds of applications for station grants. Having adopted voluminous standards and rules as the framework for the great nation-wide service of the future, how could they best proceed with the granting of applications with promptness, fairness, and efficiency? In hundreds of cases aa individual channel in a given community would be applied for by not only one but many different applicants. Urder our democratic processes in such cases, public hearings are indicated to enable the FCC to determine which of the applicants is best qualified to serve the public interest, convenience, and necessity. Some of these cases apply to cities with existing service and others do not. In some instances, there would be but one applicant for a channel. In other cases, existing stations require only a change of frequency to conform with the new allocation plans.
(Continued on page 32)

POSSIBLE V. H. F. and U. H. F. TV COVERAGE AS ESTIMATED LAST YEAR

EXTENT OF POSSIBLE TV COVERAGE ACCORDING TO PRESENT STANDARDS

Complex and difficult legal problems and lengthy procedures were involved.

The objective was to make television service available to the greatest number of people in the shortest possible time. Obviously it could not be done by processing applications in the order in which they were received, because uncontested applications from unserved areas would have had to await the completion of time-consuming hearings involving competitive applications (in many instances from large cities already well served). For many weeks prior to the April thaw, the Commission roughed out tentative processing procedures and priorities, with co-operation from the FCC Bar Association and the Society of Federal Communications Consulting Engineers. When the $31 / 2$-year freeze ended on April 14, 1952, the plan was ready.

Applicants were given until July 1 to submit new applications and amend old ones before any grants would be made. A number of procedural simplifications were adopted to save time and speed up the processing, and the following temporary priority system was established:

Priority A 1

The 30 existing stations which, under the new allocations plan, will be required to change their channel frequancies to reduce interference. These stations were listed in "TV Pattern for the Future" in the Nay issue of Radio-Electronics. WKY-TV, Oklahoma City, is onitted in the new list.

Priority A 2

New stations in cities 40 miles or more from any existing TV transmitter. In other words the Commission will concentrate on providing service to unserved areas. (Portland, Ore., and Denver, Colo., are examples.)

Priority B 1

Stations for communities where only u.h.f. channels are allocated and where the separation may be less than 40 miles from an existing transmitter (excluding educational stations).

Priority B 2

U.h.f. stations for communities where all possible v.h.f. channels are in operation.

Priority B 3

Stations for cities having no service and which may be less than 40 miles from not more than one existing station.

Priority B 4

Stations for cities having only one existing station and which are 40 miles from any other TV transmitter.

Priority B 5

Stations for cities less than 40 miles from any two or more existing transmitters.

With 491 new applications on file on

July 1, 1952, the Commission commenced the processing of the "postfreeze" applications for new television broadcast stations. Scores of competitive applications were designated for hearing and nearly 200 additional applicants were advised that their applications were competitive with others. In September the Commission announced, that, because of the limited number of examiners and other staff members engaged in hearing work, it would not have been possible to try such cases until the existing backlog was removed, and no useful purpose would have been served by designating additional applications for hearing them.
For this reason the interest of parties who had filed or who would file competitive applications would not have been adversely affected by the processing of only noncompetitive applications, for a time. It is likely that the hearings in the cases now designated for hearing and those additional competitive applications already processed by the Commission will not be concluded for a considerable period.
The Commission will continue to process noncompetitive applications in the order of priorities set forth. If mutually exclusive applications are amended so as to remove the conflict, the Commission will consider such applications at that time. The Commission will re-examine its backlog of hearing cases from time to time. When it appears that Commission personnel will be available for handling additional cases, the Commission will resume the processing of competitive applications. With the elimination, for the time, of competitive applications in favor of noncompetitive ones, many cities will receive grants much more quickly.

Small communities

Can small communities have TV stations? 835 cities, about 60 percent of the total list of 1,430 in the FCC assignment plan, have populations of 25,000 or less. Already, over 60 applications for stations in these communities are on file. The existing list of such grants will grow quickly.
The interests of the small communitics have been well protected by channel assignments. Nearly 500 communities of less than 10,000 population are allocated one or more channels. Over 300 communities of less than 25,000 but more than 10,000 population are provided for.

Grades of service

U.h.f. is new to practically all service technicians. Terrain irregularities create greater losses and much more severe shadow areas in the ultra-highfrequency band than in the very-highfrequency channels. These effects do not occur abruptly. There is a gradual change as the frequency increases, starting with the lower frequencies of channel 2 and continuing on up to the top of the u.h.f. band. The FCC has attempted to take account of this
change by authorizing higher power at the higher frequencies. Channels 2 through 6 will be limited to 100 kw effective radiated power, 7 through 13 to 316 kw , and all u.h.f. to $1,000 \mathrm{kw}$. These power differentials are intended to equalize the service radii of the various stations, and take into account the increased signal intensities needed at the higher frequencies to provide equivalent picture quality and freedom from noise and interference.

In standard broadcasting at 540 to 1600 kc , the primary service range of a station may be expressed with relative simplicity because the field intensity falls off at a fairly uniform rate, with large fill-in behind hills and obstacles. But with increasing frequency, fill-in diminishes and local scattering effects increase. These random effects are far more noticeable at v.h.f. and are severe at u.h.f. Therefore the local field intensities vary widely, depending on terrain conditions. For this reason the service ranges for television stations are expressed in statistical terms to more nearly reflect actual conditions.
Two grades of television service are recognized in the new rules and standards:

Grade A service

Grade A service is so specified that a quality acceptable to half the people (the median observer) is expected to be available for at least 90% of the time at the best 70% of receiver locations at the outer limit of this service. Expressed in terms of microvolts per meter Grade A service requires:

Channels 2-6	Channels 7-13
2,500	3,850
Channels 14-83 (u.h.f.)	
5,000	

Grade B service

Grade B service differs from Grade A in that the acceptable quality would be obtainable at only 50% of the locations instead of 70%. The field intensities in microvolts per meter are shown below for Grade B:
$\frac{\text { Channels 2-6 }}{224} \quad \frac{\text { Channels 7-13 }}{630}$
$\frac{\text { Channels }}{14-83(\text { u.h.f.) }}$
1,585

Service ranges

When these grades of service are expressed in miles distance it becomes possible for the service technician to evaluate roughly the service he may expect in his area. Judging by the many and continuing requests received by this author from service organizations, dealers, and others for information on TV service ranges, this information may be of value. The tables at the right represent average values based upon FCC's methods of interpretation. The actual radii may vary widely downward, particularly in the u.h.f. channels, if terrain conditions are poor.

Antenna installations

Locating the u.h.f. receiving an-tenna-will require more care than for v.h.f. in the marginal areas. In v.h.f. an increase in antenna height will normally produce higher field intensity and improve the margin of signal over noise levels. But, while the same relationship applies on the average over a large number of u.h.f. installations, the voltage picked up may vary wid.ly and at random in individual cases. An increase in height may actually reduce the signal level. And large variations may occur with horizontal movement.
During the Bridgeport investigations, careful studies were made at 91 typical residential locations to determine the average variation of signal intensity as the antenna was moved horizontally at a 30 -foot height. The no ement was over a range of only about 5 feet in most cases, to cover several wavelengths. The maximum and minimum values of intensity were recorded and analyzed. At 20% of the locations the displacement over these few feet produced variations of more than 2 to 1 . At 10% of the locations it produced variations of 3 to 1 . At 5% of the locations it produced variations of 4 to 1 . And in one location it was 7 to 1 !
The optimum antenna locations for u.h.f. are relatively unpredictable and the service technician who is thorough and conscientious may find it necessary to explore for them while communicating with an observer at the receiver.

Flat or tubular plastic transmission line has very low losses when properly routed and dry. But it should be isolated from nearby metallic objects such as pipes, which change its characteristics markedly at u.h.f. It should be sheltered from rain and sleet if losses are of importance.

Frequency shifts

The frequency shifts which are scheduled for 30 stations previously referred to have in many cases been covered by applications and grants. The Commission proposes to permit the stations to work out the time schedules for the shifts at their own convenience, if possible. The schedules will be determined by procurement problems and most will take place early in 1953. Several were made in 1952.

New station grants

At the time of writine the number of applications for station construction permits on file was rapidly approaching 1,000 . Of these, about 60% are for v.h.f. and the other 40% for u.h.f. grants. The total number of grants made since the Commission started processing is well over 100 , of which about 80% are for u.h.f. stations.

Prior to revising its processing routine, the Commission granted an average of 1 construction permit per week for v.h.f. stations, and 5 per week for u.h.f. stations. If this rate were continued through 1952, the year-end total of new station grants would be 25

Transmitting		Grade A Service Radii (in miles) for Powers Shown (Effective Radiated Power)					Grade B Service Radii (in miles) for Powers Shown (Effective Radiated Power)				
Antenna Height in Feet		$\begin{gathered} 1 \\ k w \end{gathered}$	10	$\begin{aligned} & 100 \\ & \text { kw } \end{aligned}$	$\begin{aligned} & 316 \\ & \text { kw } \end{aligned}$	$\begin{gathered} 1,000 \\ \mathbf{k w} \end{gathered}$	$\underset{\mathbf{k w}}{1}$	$\begin{aligned} & 10 \\ & \mathrm{kw} \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{kw} \end{aligned}$	$\begin{aligned} & 316 \\ & \text { kw } \end{aligned}$	$\begin{gathered} 1,000 \\ k w \end{gathered}$
300	$\begin{array}{ll} \text { Ch } & 2-6 \\ \text { Ch } & 7-13 \\ \text { Ch } & 14-83 \end{array}$	7 7 5	$\begin{array}{r} 12 \\ 12 \\ 9 \end{array}$	21 21 15	28 20	26	$\begin{array}{r} 22 \\ 17 \\ 9 \end{array}$	35 28 15	50 40 26	45 31	40
500	$\begin{array}{lc} \text { Ch } & 2-6 \\ \text { Ch } & 7-13 \\ \text { Ch } & 14-83 \end{array}$	$\begin{aligned} & 9 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 27 \\ & 28 \\ & 20 \end{aligned}$	35 25	23	$\begin{aligned} & 28 \\ & 22 \\ & 11.5 \end{aligned}$	43 35 20	57 46 32	52 40	47
700	$\begin{array}{ll} \text { Ch } & 2-6 \\ \text { Ch } & 7-13 \end{array}$ Ch 14-83	$\begin{array}{r} 11 \\ 11 \\ 8 \end{array}$	$\begin{aligned} & 19 \\ & 20 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 31 \\ & 34 \\ & 23 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$	37		47 40 23	63 50 37	57 45	52
1,000	$\begin{array}{lc} \text { Ch } & 2-6 \\ \text { Ch } & 7-13 \\ \text { Ch } & 14-83 \end{array}$	$\begin{gathered} 13 \\ 13.5 \\ 9 \end{gathered}$	$\begin{aligned} & 23 \\ & 25 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 37 \\ & 40 \\ & 28 \end{aligned}$	35	43	$\begin{aligned} & 39 \\ & 33 \\ & 16.5 \end{aligned}$	54 46 28	70 57 43	$\begin{aligned} & 63 \\ & 50 \end{aligned}$	59
2,000	$\begin{array}{lc} \text { Ch } & 2-6 \\ \text { Ch } & 7-13 \\ \text { Ch } & 14-83 \end{array}$	$\begin{aligned} & 19 \\ & 21 \\ & 13 \end{aligned}$	$\begin{aligned} & 34 \\ & 40 \\ & 24 \end{aligned}$	$\begin{aligned} & 50 \\ & 54 \\ & 41 \end{aligned}$	61 49	57	$\begin{aligned} & 52 \\ & 47 \\ & 24 \end{aligned}$	69 61 41	86 74 57	80 65	74

v.h.f. and 125 u.h.f. granis, or a total of 150 . This auchor expects this total to be met and possibly exceeded because of the revised processing schedule. The accelerated processing may result in a large increase in the number of v.h.f. grants, if there are included power increases for existing v.h.f. stations in the lower priority categories.

New stations

Using temporary equipment, station owners in Denver and Portland have created brilliant examples of what can be done to establish service quickly. But transmitting equipment is not available to permit wide-scale duplication of these feats. On the tasis of plans which many grantees have disclosed, we may expect to see about 12 more stations before the end of 1952 , most of them in new television areas. Based upon similar information, 35 may be added in the first half of 1953 , many of these also in new TV cities. From that point on, plans now being made will come to fruition with more rapid increases in the rate of new starts. Barring critical material complications it is estimated that 150 new stations may be added in 1953, frequency changes will be completed at the 30 stations slated to switch channels, and power will be increased by most of the existing 109 v.h.f. stations, if permitted.
Your writer believes that by the end of 1954 there may be 400 new stations; by the end of 1955 over 600, perhaps half in presently unserved cities; by 1956750 ; and by 1957 possibly 1,000 or more.

Possible national service

In "TV Pattern for the Future" in the May issue a map was published showing the extent of possible national TV service from the combined u.h.f. and v.h.f. stations, with powers and standards originally proposed by the FCC. But those actually adopted went further than had been contemplated. The accompanying map shows the extent of the total possible service areas of all TV stations listed in the FCC allocation plan, utilizing the maximum powers now permitted and judging by the Commission's criteria for gauging the service areas. If these criteria are sound, the entire United States, ex-
cepting only the areas shown in color, could be given TV service.

Because of economic problems such a degree of service cannot be realized for a long time. The very small communities cannot support a television station, and particularly a station of maximum power. But when and if the time comes that a service can be supported, the spectrum space and the channels will be available. TV will not be handicapped by the saturation and lack of channels which have through the years prevented so many small communities from having standard broadcasting primary service.

There has been much discussion and speculation concerning the minimum size of a community necessary to support its own TV station. Estimates of 25,000 to 100,000 population frequently have been mentioned. There is evidence that it can be accomplished successfully at 25,000 . It is this writer's opinion that the demand for TV is so great that people would pay almost any amount within reason to have it, and that the figure of 25,000 will shrink considerably as the ingenuity and resourcefulness of our industry is applied to the solution of this problem, which is altogether one of economics.

Installation and servicing

Denver and Portland were unprepared for the demand for receivers and technical service. Both receivers and service technicians were rushed inthe technicians to help with the overflow with which the local service companies were swamped. In all probability it will happen again elsewhere because the avalanche of demand in new TV cities comes almost overnight. Interest in and desire for TV have been whipped to a sharp edge and an overwhelming ready-made demand exists in all unserved commanities.
TV receivers are relatively complicated instruments. Few owners attempt to build or maintain them, fortunately. But they are an essential, indispensable part of the TV system which starts in the camera tube and terminates in the home kinescope. You, Mr. Service Technician, have the responsibility for your part of the system! Its proper discharge will keep you on ycur toes and pay you well when " T day" comes to your community.

TV DISTRIBUTION SYSTEMS

"Master antenna systems" are increasing in both importance and use

By ERIC LESLIE

FROM the earliest days of television, owners, dealers, and service technicians have needed some way of connecting two or more sets to an antenna. Two-set and larger distribution systems were soon worked cut. These were originally rather crude and wasteful of the precious signal, but have so developed that today almost any number of receivers can be operated as part of a distribution system, and a signal of any desirable level can be applied to their inputs.
Earliest and simplest of all distribution systems is a simple resistor network. It matches the input impedance of the receiver to the line and isolates one receiver from another by the attenuation of the resistors. Fig. 1 is a diagram of a typical system. If signals are strong enough, more than two receivers may be connected by choosing the resistors so that the parallel

Fig. 1-Simplest distribution system.

Fig. 2-An efficient two-set coupler.

The Electro-Voice 3100 has outputs for four receivers and a second unit.
resistance of all the branches is 300 ohms. Thus for three receivers, the resistors on each side of the receiver inputs would be 300 ohms each, giving us three 900 -ohm branches which have a parallel resistance of 300 ohms .

Such systems work reasonably well in strong-signal areas, where some signal attenuation may be a good thing: rather than the contrary. But energy is wasted. Even in a two-receiver setup half the signal is dissipated in resistors, and the proportion is increased with the number of receivers. A less wasteful method is needed even for moderate-signal areas.
A number of systems using methods similar to r.f.-transformer or impedance coupling were next to appear. Of these, possibly the Brach two-set MulTel coupler is the best known. The antenna is divided into two artificial lines, as shown in Fig. 2. The correct

* if. 75a TERMINATING RESISTOR UNMARKED RESISTORS 220-1Ka

Fig. 3-A system made up of boosters.
impedances are approximated by bifilar windings, which also act as a highpass filter, shorting out interference below about 50 mc .

Interaction between receivers is reduced by impedance mismatch. The antenna looks into a matched 300 -ohm impedance, but each receiver looks into a circuit of considerably higher impedance, formed by the line and the other receiver in series. So, while energy is transferred efficiently from the line to the receivers, any signal fed back from the receivers is greatly attenuated.

The Mul-Tel couplers may have two or four outputs, and wh re there is enough signal, a four-output unit may be fed to four other couplers rather than direct to receivers, making a 16 set distribution system.

A distribution system which will work where there is not enough signal for the types just described is often needed. A system that would pep the signal up a little to maks up for the losses along transmission lines, rather than attenuate it, would be valuable in many installations. Ordinary TV boosters were first used to make up such a system. The simplest form appears in Fig. 3. Units marked IT-75A are home type boosters, the IT-77A's are commercial types. The isolating resistors prevent one TV set from radiating to another, and also cut down possibility of oscillation in the boosters themselves.

More than one television manufacturer modified his home type boosters for 24 -hour operation, operating the tubes and parts at conservative ratings. Thus the IT (Industrial Television, Inc.) 77A's are commercial types, and 75A's home versions of the

Left-The Amplitel uses channel strips with several tubes each. Right-The junction boxes show ingenious design.
same booster; and some BlonderTongue boosters carry the same model number with the prefix CA for commercial and HA for home types. The next and obvious step was to put two outputs on a single booster.

The carliest two-output boosters were designed by coupling the coil in the r.f. amplifier's plate circuit to two output coils instead of one. More refined systems were developed to isolate the outputs from each other, and mul-tiple-output distribution amplifiers were born. These may have two, four, or eight outlets in practical equipment. Amplification may be slight; in some cases there may be a slight loss through each unit. A typical system is that of Electro-Voice, using the model 3100 unit (See photo). This unit has four outputs for receivers and another line output to which a second distribution unit may be attached.

Where stations are weak, a booster may be added at the antenna, and whore the signal is weakened in long runs of transmission line, an ordinary one-output line booster can bring it up to original (or greater) strength.

Another approach to the master antenna problem suggested itself-or rather was remembered, for it is an elaboration of the amplified master radio antenna system introduced by RCA in the 1920's. In this system there is a large central amplifier, with other amplifiers for receivers or groups of receivers if necessary. In its television form, the central amplifier is actually a number of single-channel amplifiers whose outputs are connected through a mixer and fed through coaxial lines to the various receivers.

The largest units of this type-made by RCA, Jerrold, G-E, and otherswill be discussed in a separate article, on community antennas. A typical intermediate type is the Amplitel, made by Transvision for the company of that name. As shown, it consists of a number of channel units, or "strips." Each of these is a multitube amplifier, with the stages staggered to give full $6-\mathrm{mc}$
bandwidth. Separate antennas are used for each strip. Since each antenna receives from a single siation, high-gain Yagis are generally used, and a strong signal can be put into the amplifier. In the Amplitel systom, the low-channel strip amplifiers have five tubes and have a voltage gain of about 7,000 . The higher v.h.f. channel amplifiers have six tubes, but the gain is not as great -about 4,000.

The signals from the various strips are mixed in an ingenious way. Each amplifier is connected to the mixer by a section of 72 -ohm line a quarterwavelength long at its channel frequency. A quarter-wave line acts as an impedance transformer. In this case its 72 -ohm impedance ($\mathrm{Z}_{\mathrm{m}}=$ $\sqrt{\left.Z_{\text {In }} \times \mathbf{Z}_{\text {out }}\right)}$ transforms the approximately 350 -ohm output of the strip amplifier down to 15 ohms, the impedance of the mixing box, where \mathbb{Z}_{m} is the impedance of the matching section, $\mathrm{Z}_{\mathrm{out}}$ is the output impedance of the strip,
and $Z_{1 n}$ is the mixer input impedance. Although the ends of the matching sections are simply paralleled, the impedance remains at 15 ohms. Each line is a matching transformer at its own frequency, but presents a much higher impedance at any other frequency. Thus there is vary little interaction between the various sections.

Output of the matching section is a group of five 75 -ohm cables, paralleled to have a total impedance of 15 ohms. Each of these goes to a distribution box which feeds 15 receivers. As can be seen from the photo, each of the branches consists of two resistors, 1,000 ohms in series with the hot antenna lead, and 100 ohms between that and ground. The 100 -ohm input is effectively shunted by the 1,000 -ohm resistor and cable capacitances, giving an impedance of about 70 ohms, which can be transformed up to 300 ohms with a matching transformer whenever necessary.

Fig. 4-High- and low-band strips of the Blonder-Tongue MA4-1. Constants vary slightly with frequency; these two are typical for channels $\mathbf{7 - 8}$ and 4 .

A link between the simple distribution systems (which are in effect wideband boosters with some means of splitting the output and reducing interaction between sets), and the larger community type systems is the BlonderTongue mixer-amplifier system. The MA4-1 unit which is the heart of this system accommodates four plug-in strips plus one wide-band input which can be used for strong signals (any signals that can tolerate 10 db attenuation). The output is distributed through 2- or 8-receiver (DA2-1 or DA8-1) distribution amplifiers, which add a little gain of their own. If long runs have to be made, a commercial type booster (CA-1) can step the signal up 28 db over the whole spectrum.

A system of this type permits using sensitive Yagis for the weaker signals, while putting stronger ones through the system without amplification, thus economizing on amplifier strips in areas where there is one strong station and others are desired, or where there is a local FM station, but TV stations are remote. Each of the strips has a gain of between 16 and 18 db . Two tubes are used, a 6AB4 and a 6CB6. Circuit is slightly different for high and low bands, as indicated in Fig. 4. Two of the units can be used in tandem, for more than four channels.

Lowest-priced of all the multipleantenna systems, the MA4-1 is economically practical even for single TV receivers in bad areas, and can be
used by stores, small apartments, groups of neighbors in fringe-area districts, and others who would find the simpler systems unsatisfactory and the large community systems expensive.

Some antenna systems resemble in their equipment the larger community types, though they may be intended chiefly for apartment-house application. A typical example is Tacoplex, which (though not normally sold as a community antenna system) includes a number of features not found in the simpler distribution systems. Fig. 5 shows a simplified diagram of a system using Taco units. Basic unit is a chassis-power supply, on which a number of strips and a mixer unit can be mounted. The mixer may or may not

Brach two-set coupler shown in Fig. 2.

Blonder-Tongue MA4-1 mixer-amplifier, described as usable "for 1 set or 2,000."

Fig. 5-Simplified drawing showing Taco components in a versatile system.
be electronic, depending on the signal level desired and the number of trunk lines to be fed.

An installation may have a number of other refinements. For example, a weak signal from a high-band v.h.f. station (channel 13 in the diagram) may be received on an antenna cut to its frequency, boosted by an antennatop amplifier, then fed to a converter which changes its frequency to that of an unused low-band channel (channel 2). This reduces attenuation in long runs of coaxial cable.

Where there are long runs of cable between the original mixer and the receivers, the cable may be terminated in a signal separator, a unit with one input for the composite signal, and separate outputs for each frequency being handled by the system. These single-channel signals are again amplified through strip amplifiers, mixed, and sent on to the various outlet boxes, which may also be either electronic or nonelectronic.

EUROPEAN TV NETWORK

Microwave-relay or coaxial-cable runs thousands of miles long are impossible in Europe. In a scant 750 miles, the engineer has to contend with problems of national boundaries and differences in definition standards and systems of transmission, and even different national tastes in programs! This international network was therefore considered a mild triumph in the European television world. Problems of changing standards and systems were solved optically at one blow, by simply rephotographing the programs from a television receiver screen. Thus at Paris, a 441 -line TV camera was focused on an 819line receiver kinescope screen to change the 819 -line picture to 441 lines for the older Paris transmitter, and again at Cassel, where the program changed over to the British 405 -line standard. Besides being picked up by televiewers in France, England, and Scotland, the programs were received on numbers of Belgian TV sets direct from the Lille Transmitter.

\qquad

The original artwork and description of the system from which this material was prepared was created and supplied to us by our friend and contributor A. V. J. Martin, editor of Télévision (Paris, France).

THE NEW UHF CHANNELS

Their channel limits，frequency of sound and picture carriers，and the equivalent wavelengths in inches．

（This material is abstracted from a table printed in＂Application Data and Filing Information for Television Stations，＂a publication compiled by the Broadcast Engineering Section，Engineering Products Division，Radio Corporation of America，by whose courtesy it is here reproduced．）

\begin{tabular}{|c|}
\hline \& \[
\frac{\stackrel{\rightharpoonup}{N}}{\stackrel{-}{N}}
\] \& \[
\begin{gathered}
\text { O} \\
\text { O} \\
\text { N }
\end{gathered}
\] \& \[
\begin{aligned}
\& \stackrel{\rightharpoonup}{n} \\
\& \stackrel{y}{o} \\
\& 0
\end{aligned}
\] \& \[
\] \& \[
\begin{aligned}
\& \stackrel{\rightharpoonup}{\alpha} \\
\& \stackrel{0}{0} \\
\& \stackrel{0}{0}
\end{aligned}
\] \& \[
\begin{aligned}
\& 8 \\
\& \frac{8}{+} \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{\sim}{1} \\
\& \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\frac{\infty}{\sim}
\] \& \[
\begin{aligned}
\& 10 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& o \\
\& \alpha \\
\& \alpha \\
\& \vdots \\
\& i
\end{aligned}
\] \& \[
\begin{aligned}
\& \circ \\
\& \infty \\
\& \infty \\
\&
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { O} \\
\& \underset{8}{1} \\
\& \text { n }
\end{aligned}
\] \& \[
\begin{aligned}
\& 8 \\
\& 0 \\
\& 1 \\
\& \text { in }
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& n \\
\& n \\
\&
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{\sim}{m} \\
\& \underset{\sim}{n} \\
\& \underset{\sim}{2}
\end{aligned}
\] \& \[
\frac{\stackrel{0}{\mathrm{y}}}{\mathbf{N}}
\] \& \[
\begin{aligned}
\& \infty \\
\& \stackrel{\infty}{o} \\
\& \vdots \\
\& i
\end{aligned}
\] \& \begin{tabular}{l}
a \\
© \\
＋ \\
＋ \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& \infty \\
\& \dot{~} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \underset{\sim}{\circ} \\
\& \underset{\sim}{+}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Do } \\
\& \underset{寸}{\mathbf{~}} \\
\& \underset{\sim}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { a } \\
\& \underset{\sim}{n} \\
\& \text { + }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \otimes_{0}^{\infty} \\
\& \underset{\sim}{7} \\
\& \underset{\sim}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Z } \\
\& \underset{\sim}{N} \\
\& \underset{\sim}{2}
\end{aligned}
\] \& \[
\underset{\underset{\sim}{\mathrm{N}}}{\mathbf{N}}
\] \& \[
\begin{aligned}
\& \underset{N}{N} \\
\& \dot{\sim} \\
\& \dot{\sim}
\end{aligned}
\] \& \[
\begin{gathered}
\underset{\sim}{\underset{N}{N}} \\
\underset{\sim}{2}
\end{gathered}
\] \& \[
\begin{aligned}
\& 0 \\
\& \text { O } \\
\& \infty \\
\& \infty \\
\& \text { M }
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{\sim}{N} \\
\& \underset{\sim}{N}
\end{aligned}
\] \& \[
\begin{aligned}
\& a \\
\& \underset{\sim}{0} \\
\& \text { on } \\
\& \underset{\sim}{2}
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \text { O} \\
\& \stackrel{\circ}{寸} \\
\& \text { mi }
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{N}{n} \\
\& \underset{\sim}{\tilde{m}}
\end{aligned}
\] \& N \\
\hline ¢ \& \[
\] \& \[
\frac{n}{n}
\] \& \[
\begin{aligned}
\& n \\
\& \stackrel{n}{n} \\
\& \vdots
\end{aligned}
\] \& \[
\begin{aligned}
\& N \\
\& \\
\&
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { n } \\
\& \text { ò }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { in } \\
\& i n \\
\& n \\
\& \hline
\end{aligned}
\] \& \[
\frac{N}{N}
\] \& \[
\begin{aligned}
\& n \\
\& N \\
\& N
\end{aligned}
\] \& \[
\begin{aligned}
\& N \\
\&
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \alpha \\
\& \alpha \\
\&
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& n \\
\& \\
\&
\end{aligned}
\] \& \[
\frac{n}{n}
\] \& \[
\underset{\sim}{n}
\] \& \[
\begin{gathered}
n \\
\\
\end{gathered}
\] \& \[
\begin{aligned}
\& n \\
\& \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \vdots \\
\&
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \infty \\
\& \infty \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
n \\
\underset{\sim}{\infty} \\
\underset{\sim}{2}
\end{gathered}
\] \& \[
\stackrel{\sim}{\infty}
\] \& \[
\begin{aligned}
\& n \\
\& \stackrel{n}{2} \\
\&
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \sim \\
\& \sim \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \vdots \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \infty \\
\& \\
\&
\end{aligned}
\] \& \[
\begin{gathered}
\infty \\
\underset{\infty}{\infty} \\
\underset{\infty}{2}
\end{gathered}
\] \& \(\stackrel{n}{\stackrel{n}{2}}\) \& \[
\begin{aligned}
\& n \\
\& \\
\& \infty \\
\& \infty
\end{aligned}
\] \& \[
\frac{\underset{\sim}{\infty}}{\underset{\infty}{2}}
\] \& \[
\stackrel{\text { N}}{\stackrel{N}{\mathrm{~m}}}
\] \& \[
\stackrel{\sim}{\sim}
\] \& \[
\begin{aligned}
\& n \\
\& \\
\& \vdots \\
\& \infty \\
\& \infty
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \\
\& \infty \\
\& \infty
\end{aligned}
\] \& \[
\frac{n}{N}
\] \& \[
\begin{gathered}
n \\
\underset{\infty}{n} \\
\end{gathered}
\] \& \[
\begin{aligned}
\& \infty \\
\& \\
\& \infty \\
\& \infty
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \sim \\
\& \infty \\
\& \infty \\
\& \infty
\end{aligned}
\] \\
\hline \& \[
\begin{aligned}
\& \stackrel{\sim}{n} \\
\& \stackrel{N}{N}
\end{aligned}
\] \& \[
\stackrel{\infty}{\sim}
\] \& \[
\begin{aligned}
\& \text { N } \\
\& \underset{\sim}{\circ} \\
\&
\end{aligned}
\] \& \[
\begin{aligned}
\& \bar{\alpha} \\
\& \infty \\
\& \underset{\infty}{\circ}
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \\
\& 0 \\
\& 0
\end{aligned}
\] \& 3
0
0
0
0 \& \[
\] \& \[
\frac{8}{9}
\] \& \[
\begin{aligned}
\& \underset{\sim}{\infty} \\
\& \mathbf{o} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { N} \\
\& 0 \\
\& 0 \\
\& \vdots
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{\sim}{N} \\
\& \underset{\sim}{i} \\
\& \text { N }
\end{aligned}
\] \& \[
\begin{aligned}
\& \frac{a}{2} \\
\& \underset{\sim}{2} \\
\& i
\end{aligned}
\] \& \[
\begin{aligned}
\& \bar{a} \\
\& 0 \\
\& 0 \\
\& i
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \\
\& \\
\& n \\
\& n
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { N} \\
\& \underset{y}{c} \\
\& \text { ni }
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{\sim}{0} \\
\& \underset{\sim}{e} \\
\& \text { N }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { N } \\
\& \mathbf{\infty} \\
\& \mathbf{i n}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathbf{M} \\
\& \mathbf{N} \\
\& \dot{J}
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \pm \\
\& \pm \\
\& \underset{\sim}{n}
\end{aligned}
\] \& \[
\begin{aligned}
\& \tilde{N} \\
\& \underset{\sim}{2} \\
\& \underset{\sim}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& \text { O} \\
\& \text { O } \\
\& \text { j }
\end{aligned}
\] \& \[
\frac{0}{\substack{n}}
\] \& \[
\begin{aligned}
\& \hat{0} \\
\& \text { O} \\
\& \text { I }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { O} \\
\& \text { O-N } \\
\& \dot{ \pm}
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \& \& \& \& \[
\begin{aligned}
\& \vec{o} \\
\& 0 \\
\& \dot{0} \\
\& \underset{\sim}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \dot{m} \\
\& \underset{n}{n} \\
\& \hline
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 0 \\
\& \underset{\sim}{\mathbf{N}} \\
\& \underset{\sim}{2}
\end{aligned}
\] \\
\hline 츨 \& \[
\stackrel{\sim}{\sim}
\] \& \[
\begin{aligned}
\& \stackrel{\sim}{c} \\
\& \underset{\sim}{\infty} \\
\&
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \underset{\sim}{n} \\
\& \vdots
\end{aligned}
\] \& \[
\begin{gathered}
n \\
\\
\vdots \\
0
\end{gathered}
\] \& \[
\begin{aligned}
\& n \\
\& \underset{\sim}{n} \\
\&
\end{aligned}
\] \& \[
\underset{\sim}{\sim}
\] \& \[
\stackrel{N}{\stackrel{N}{N}}
\] \& \[
\begin{aligned}
\& \underset{\sim}{N} \\
\& \underset{\sim}{n}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M } \\
\& \text { O} \\
\& \underset{N}{N}
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& N \\
\& N \\
\&
\end{aligned}
\] \& \[
\stackrel{n}{\underset{N}{N}}
\] \& \[
\begin{aligned}
\& N \\
\& \underset{N}{N}
\end{aligned}
\] \& \[
\begin{aligned}
\& N \\
\& N \\
\&
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \\
\&
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \\
\&
\end{aligned}
\] \& \[
\underset{\sim}{n} \underset{\sim}{n}
\] \& \[
\underset{\sim}{N}
\] \& \[
\begin{aligned}
\& \underset{\sim}{N} \\
\& \underset{\sim}{\infty}
\end{aligned}
\] \& \[
\begin{aligned}
\& \sim \\
\& \underset{\alpha}{\infty} \\
\& \underset{\sim}{\circ}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { N } \\
\& \text { N } \\
\&
\end{aligned}
\] \& \[
\underset{\sim}{n}
\] \& \[
\begin{aligned}
\& \underset{\sim}{n} \\
\& \underset{\infty}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& n \\
\& \underset{\infty}{\infty} \\
\& \underset{\infty}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{\sim}{\infty} \\
\& \underset{\infty}{\infty}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { n } \\
\& \underset{\infty}{N} \\
\& \hline
\end{aligned}
\] \& \[
\frac{\underset{\infty}{\sim}}{\underset{\infty}{\infty}}
\] \& \[
\begin{aligned}
\& \underset{\sim}{N} \\
\& \underset{\sim}{\infty}
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{\sim}{n} \\
\& \underset{\sim}{n} \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\stackrel{N}{o} \\
\underset{\sim}{\infty}
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { N } \\
\& \underset{\sim}{n} \\
\& \infty \\
\& \hline
\end{aligned}
\] \& \[
\frac{\sim}{\infty}
\] \& \begin{tabular}{c}
\(N\) \\
\multirow{6}{N}{} \\
\end{tabular} \& \[
\begin{aligned}
\& \underset{\sim}{\infty} \\
\& \underset{\infty}{\infty}
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{\sim}{n} \\
\& \underset{\infty}{\infty}
\end{aligned}
\] \& \[
\left\lvert\, \begin{aligned}
\& \infty \\
\& \underset{\infty}{\infty} \\
\& \mathbf{\infty}
\end{aligned}\right.
\] \\
\hline ¢ \& ol \& \[
\begin{aligned}
\& \mathfrak{o} \\
\& \mathbf{o} \\
\& \dot{0} \\
\& \infty \\
\& \text { on }
\end{aligned}
\] \& \[
\begin{gathered}
\infty \\
\stackrel{\infty}{\mathbf{o}} \\
\dot{\sim} \\
\dot{\sim}
\end{gathered}
\] \& \& \[
\begin{aligned}
\& 0 \\
\& \underset{\sim}{\prime} \\
\& \dot{\prime}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& \underset{i}{2} \\
\& \vdots \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\underset{N}{N} \\
\underset{\sim}{0} \\
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { শ্N } \\
\& \underset{\sim}{\mathrm{N}} \\
\& \text { N }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { N} \\
\& \underset{N}{\infty} \\
\& \underset{N}{\infty}
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{\sim}{\mathrm{N}} \\
\& \underset{\sim}{\mathrm{~N}}
\end{aligned}
\] \& \& \[
\] \& \[
\begin{gathered}
\infty \\
\underset{\sim}{\sim} \\
\underset{\sim}{n} \\
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { I } \\
\& \stackrel{0}{0} \\
\& \text { in }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { O} \\
\& \text { N } \\
\& \text { j}
\end{aligned}
\] \& \[
\] \& \[
\begin{gathered}
\boldsymbol{m} \\
\underset{\sim}{\circ} \\
\stackrel{1}{n}
\end{gathered}
\] \& \[
\begin{aligned}
\& \infty \\
\& \underset{\sim}{\infty} \\
\& \underset{\sim}{\infty} \\
\& \underset{\sim}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \dot{\sim} \\
\& \underset{\sim}{\infty} \\
\& \infty \\
\& \sim
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathbf{O} \\
\& 0 \\
\& \dot{\sim} \\
\& \underset{\sim}{1}
\end{aligned}
\] \& \[
\begin{aligned}
\& \infty \\
\& \infty \\
\& \hline \mathbf{\circ} \\
\& \hline-\infty
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathbf{N} \\
\& \infty \\
\& 0 \\
\& 0 \\
\& \hline \infty \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \infty \\
\& \underset{\infty}{\infty} \\
\& \stackrel{N}{\infty}
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{\sim}{\mathbf{N}} \\
\& \mathbf{\infty} \\
\& \mathbf{\infty}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathbf{O} \\
\& \mathbf{O} \\
\& \dot{\sim} \\
\& \underset{\infty}{\infty}
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \underset{\sim}{\infty} \\
\& \infty \\
\& \dot{\sim} \\
\& \infty
\end{aligned}
\] \& \[
\begin{aligned}
\& \infty \\
\& \infty \\
\& \text { M } \\
\& \text { M } \\
\& \hline \mathbf{\infty}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathbf{N} \\
\& \infty \\
\& 0 \\
\& \infty \\
\& \infty \\
\& \infty
\end{aligned}
\] \& \[
\begin{aligned}
\& 8 \\
\& \infty \\
\& 0 \\
\& 1 \\
\& \infty \\
\& \infty
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { O} \\
\& \infty \\
\& \text { ó } \\
\& \infty \\
\& \infty
\end{aligned}
\] \& N \& \[
\begin{gathered}
\infty \\
\underset{\infty}{\infty} \\
\underset{\infty}{\sim}
\end{gathered}
\] \& \[
\begin{aligned}
\& \overrightarrow{\mathbf{N}} \\
\& \mathbf{\infty} \\
\& \mathbf{\infty} \\
\& \mathbf{\infty}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathbf{o} \\
\& \mathbf{o} \\
\& \underset{\sim}{\mathbf{o}} \\
\& \mathbf{\infty}
\end{aligned}
\] \\
\hline 宅 \& － \& \％ \& in \& ก1 \& \({ }^{1}\) \& W \& \(\cdots\) \& \(\stackrel{\circ}{\circ}\) \& N \& \％ \& i \& 8 \& \(\overline{0}\) \& N \& 0 \& \％ \& 0 \& 8 \& へ \& \(\infty\) \& 合 \& \(\bigcirc\) \& － \& N \& \(\cdots\) \& N \& N \& ํ \& N \& \(\stackrel{\infty}{\sim}\) \& － \& 8 \& \(\cdots\) \& N \& \(\boldsymbol{\infty}\) \\
\hline \& \[
\begin{aligned}
\& \text { N } \\
\& \text { O } \\
\& \text { } \\
\& \text { }
\end{aligned}
\] \& \[
\begin{gathered}
\stackrel{\rightharpoonup}{2} \\
\underset{\sim}{j} \\
\underset{\sim}{\prime}
\end{gathered}
\] \& \[
\frac{\underset{\infty}{\infty}}{\frac{\infty}{\dot{N}}}
\] \& \[
\begin{aligned}
\& \mathfrak{M} \\
\& \text { O} \\
\& \underset{\sim}{~}
\end{aligned}
\] \& \[
\begin{aligned}
\& \underset{\sim}{n} \\
\& \underset{\sim}{c} \\
\& \hline
\end{aligned}
\] \& \(\stackrel{-}{\mathrm{N}}\)
\(\stackrel{y}{c}\)
ले \& \(n\)

ले \& $$
\begin{aligned}
& \tilde{o} \\
& \underset{\sim}{\alpha} \\
& \underset{\sim}{c}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { O} \\
& n \\
& \sim \\
& \text { Nָ }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \underset{\sim}{\sim} \\
& \underset{\sim}{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { M } \\
& \text { M} \\
& \text { N్ }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \infty \\
& \\
&
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\underset{\sim}{N} \\
\underset{\sim}{N}
\end{gathered}
$$

\] \& \[

\frac{\underset{N}{N}}{\underset{\sim}{N}}

\] \& \[

$$
\begin{aligned}
& \hat{0} \\
& \mathbf{o} \\
& \underset{\sim}{N}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \bar{O} \\
& \infty \\
& \text { O } \\
& \text { O}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { N} \\
& \underset{\sim}{0} \\
& \underset{\sim}{c}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\infty \\
\underset{\sim}{\sim} \\
\underset{\sim}{C} \\
\underset{\sim}{2}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \underset{\sim}{\infty} \\
& \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \bar{m} \\
& \vdots \\
& \hline \mathbf{N}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sim \\
& \infty \\
& \underset{\sim}{\sim}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
9 \\
9 \\
0 \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{O} \\
& \underset{\sim}{~} \\
& \underset{\sim}{2}
\end{aligned}
$$
\] \& n

$\underset{\sim}{\circ}$

an \& $$
\begin{gathered}
\underset{\sim}{\mathbf{~}} \\
\mathbf{\alpha}
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 0 \\
& \infty \\
& \infty \\
& \infty \\
& \hline
\end{aligned}
$$

\] \& － \& \[

$$
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 0 \\
& \infty \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{\mathbf{N}} \\
& \underset{\sim}{\mathbf{N}} \\
& \mathbf{o}
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \mathbf{\infty} \\
& \mathbf{\infty} \\
& \mathbf{o} \\
&
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{o} \\
& \mathbf{\infty} \\
& \underset{\sim}{0}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { n } \\
& \stackrel{1}{2} \\
& \stackrel{1}{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \stackrel{\infty}{N} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \substack{n \\
0 \\
0 \\
n \\
\hline}
\end{aligned}
$$
\]

\hline \& $$
\begin{aligned}
& n \\
& \stackrel{n}{n} \\
& \underset{\gamma}{2}
\end{aligned}
$$ \& \[

\stackrel{n}{N}

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{n} \\
& \underset{\sim}{\infty}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{\aleph} \\
& \underset{\sim}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \stackrel{n}{2} \\
& \stackrel{\rightharpoonup}{2}
\end{aligned}
$$

\] \& \[

\] \& \[

$$
\begin{aligned}
& n \\
& = \\
& =
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& n \\
& n
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { N } \\
& \underset{\sim}{N}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{n} \\
& \vdots \\
&
\end{aligned}
$$

\] \& N \& \[

$$
\begin{gathered}
n \\
\underset{\sim}{\sim} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{n} \\
& \stackrel{y}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
n \\
\\
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{n}{n} \\
& n
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{n} \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \vdots \\
& \hdashline
\end{aligned}
$$

\] \& \[

\underset{\sim}{n} \underset{\sim}{n}

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{\infty} \\
& \underset{\sim}{\infty}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \\
& 0 \\
& \infty \\
& \hline
\end{aligned}
$$

\] \& \[

\] \& \[

\frac{n}{2}

\] \& \[

$$
\begin{aligned}
& n \\
& \stackrel{n}{0} \\
& \stackrel{y}{0}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \frac{n}{0}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
n \\
\underset{\sim}{n} \\
\underset{\sim}{2}
\end{gathered}
$$

\] \& \[

\frac{n}{n}

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{n}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{n} \\
& \underset{\sim}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \hat{N} \\
& \dot{\alpha} \\
& \dot{0}
\end{aligned}
$$

\] \& \[

\] \& \[

\frac{\pi}{8}

\] \& \[

$$
\begin{aligned}
& n \\
& \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \\
&
\end{aligned}
$$
\] \& n

n
n
n
0

\hline \& $$
\begin{aligned}
& n \\
& \text { n } \\
& 0 \\
& \stackrel{1}{n}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \grave{N} \\
& \underset{N}{2} \\
& \underset{~}{\prime}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
\underset{\sim}{\sim} \\
\underset{\sim}{c}
\end{gathered}
$$

\] \& \[

\underset{I}{\underset{\sim}{N}}

\] \& \[

$$
\begin{aligned}
& \infty \\
& \underset{\sim}{\infty} \\
& \underset{\sim}{\infty} \\
& \underset{\sim}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \circ \\
& \text { \% } \\
& \stackrel{y}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\infty \\
\stackrel{\infty}{\circ} \\
\underset{\sim}{\sim}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \circ \\
& \alpha \\
& \vdots \\
& \underset{\sim}{N}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { N} \\
& \underset{\sim}{N} \\
& \text { Nָ }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\circ} \\
& \stackrel{\rightharpoonup}{\mathbf{N}} \\
& \underset{\sim}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{o} \\
& \underset{\sim}{\mathrm{N}} \\
& \text { N }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \infty \\
& 0 \\
& 0 \\
& 0 \\
& \sim
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\bar{N} \\
\underset{N}{N}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \mathbf{Q}^{\infty} \\
& \underset{\sim}{\sim} \\
& \underset{\sim}{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \\
& \underset{\sim}{n} \\
& \hline
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& \infty \\
& 0 \\
& 0 \\
& \text { N }
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\underset{\sim}{o} \\
\infty \\
0 \\
\underset{\sim}{\infty}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& N \\
& \\
& \text { N }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { O} \\
& 0 \\
& \hline 0 \\
& \text { N }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { M } \\
& \text { O } \\
& \text { a }
\end{aligned}
$$

\] \& \& \& \[

$$
\begin{aligned}
& \underset{\sim}{N} \\
& \underset{N}{N} \\
& \underset{\sim}{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \infty \\
& \mathbf{\infty} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \infty \\
& \alpha \\
& \infty \\
& \infty \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8 \\
& \infty \\
& \infty \\
& \infty
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 0 \\
& \infty
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\underset{N}{\underset{N}{2}} \\
\underset{\sim}{\infty} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{a} \\
& \underset{\sim}{\infty} \\
& \underset{\sim}{2}
\end{aligned}
$$

\] \& \[

\underset{\sim}{\underset{\sim}{\infty}}

\] \& \[

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{2} \\
& \underset{\sim}{2} \\
&
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& n \\
& 0 \\
&
\end{aligned}
$$
\] \& ¢

\hline 華 \& $$
\stackrel{\sim}{\sim}
$$ \& \[

\stackrel{n}{N}

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{N} \\
& \underset{\sim}{\infty}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{0} \\
& \dot{\sim}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{n} \\
& \stackrel{2}{\sim}
\end{aligned}
$$

\] \& \[

\frac{n}{\sim}

\] \& \[

\stackrel{\sim}{\sim}

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{n} \\
& \underset{\sim}{m}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\stackrel{\sim}{\alpha} \\
\stackrel{1}{n}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \underset{\sim}{N} \\
& \underset{N}{n} \\
& \underset{\sim}{n}
\end{aligned}
$$

\] \& \[

\stackrel{N}{N}

\] \& \[

\stackrel{\sim}{\underset{\sim}{n}}

\] \& \[

$$
\begin{aligned}
& \underset{N}{N} \\
& \underset{\sim}{N}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { N } \\
\underset{\sim}{9} \\
\text { N゙ }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \text { N } \\
& \text { N̂ } \\
& \text { in }
\end{aligned}
$$

\] \& \[

\stackrel{\sim}{c}

\] \& \[

$$
\begin{aligned}
& \sim \\
& \underset{\sim}{0} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{n} \\
&
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
n \\
\underset{\sim}{n} \\
i
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{n} \\
& \underset{\sim}{0}
\end{aligned}
$$

\] \& \[

\frac{n}{n}

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{\hat{o}} \\
& \underset{\sim}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{0} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{o}{0} \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
n \\
\underset{\sim}{n} \\
\vdots
\end{gathered}
$$

\] \& \[

\frac{N}{N}

\] \& \[

$$
\begin{gathered}
\sim \\
\underset{\sim}{\mathrm{N}}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
n \\
\underset{\sim}{\circ}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \sim \\
& \underset{\sim}{\infty} \\
& \underset{\sim}{0}
\end{aligned}
$$
\] \& n

0
0
0

0 \& $$
\underset{\sim}{n}
$$ \& \[

\underset{\sim}{\sim}

\] \& \[

$$
\begin{aligned}
& N \\
&
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { n } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{n} \\
& \stackrel{n}{2}
\end{aligned}
$$
\]

\hline $\stackrel{y}{2}$ \& － \& \& \& \[
$$
\begin{aligned}
& \dot{q} \\
& \underset{\sim}{\dot{1}} \\
& \dot{\infty} \\
& \underset{\sim}{0}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8 \\
& \text { N } \\
& \text { ¿ }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 8 \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& n \\
& 0 \\
& 0 \\
& n
\end{aligned}
$$

\] \& \[

\frac{\infty}{\frac{\infty}{n}} \underset{\sim}{n}

\] \& \[

$$
\begin{aligned}
& \text { U } \\
& \sim \\
& \infty \\
& \infty \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \underset{\sim}{n} \\
& \dot{N} \\
& N
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \text { N} \\
& \text { ì } \\
& \text { in }
\end{aligned}
$$

\] \& N \& \& \& \[

$$
\begin{aligned}
& 8 \\
& \stackrel{8}{4} \\
& \stackrel{y}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8 \\
& 0 \\
& \text { oin } \\
& \text { on }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { N } \\
& i \\
& \dot{0} \\
& 0 \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\infty \\
\stackrel{1}{n} \\
\underset{\sim}{N}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \infty \\
& \infty \\
& \infty \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& \mathbf{N} \\
& \dot{8} \\
& \mathbf{N}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { O} \\
& 0 \\
& \text { ó } \\
& \text { in }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& 0 \\
& \text { O} \\
& \text { O} \\
& \text { O}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0 \\
0 \\
\dot{4} \\
\stackrel{1}{6}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \text { on } \\
& \text { i } \\
& \text { N }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { ్ָర } \\
& \text { ஸ్ర } \\
&
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\infty \\
\underset{O}{0} \\
\underset{\sim}{2} \\
\underset{\sim}{2}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \text { U } \\
& 0 \\
& 0_{0}^{0} \\
& { }_{0}^{2}
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 00 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Ò } \\
& \text { ò } \\
& \text { hi }
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \text { N } \\
& \text { ó } \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8 \\
& 0 \\
& 0 \\
& \dot{1} \\
& 0
\end{aligned}
$$
\]

\hline $$
\begin{aligned}
& \dot{6} \\
& \stackrel{y}{U} \\
& \hline
\end{aligned}
$$ \& － \& \sim \& \bigcirc \& $\stackrel{\text { N }}{ }$ \& \sim \& a \& 앙 \& － \& ત \& ㄲ \& N \& $\stackrel{\sim}{\sim}$ \& $\stackrel{\sim}{\sim}$ \& N \& $\stackrel{\sim}{\sim}$ \& － \& 앙 \& ¢ \& న్ల \& ¢ \& \＃ \& m \& ¢ \& ल \& ¢ \& $\stackrel{\square}{0}$ \& 앙 \& 于 \& \％ \& \％ \& \％ \& 4 \& 8 \& N \& 号

\hline
\end{tabular}

By JOHN F. RIDER*

MANY sections of the United States will receive television for the first time in the near future. Will the servicing personnel in these new areas make the same mistakes as those who have worked in TV areas for several yearsor will they learn from the experiences of others? That's the big question.
The public has not been too happy with the TV technician. It is debatable where the fault lies. Experience has shown that certain acts of commission and omission by the TV service technician have irritated the public, and these operations have certainly been to the technicians' disadvantage. We are going to give a capsule review of a few of these malpractices in the hope that it will benefit service technicians in new TV areas, and those yet to be developed.

The solemn promise

Failure to inspect a defective television receiver, or to return a repaired television receiver on the date promised, has irked the public very much. It has been, and still is a deplorably common practice. It can be explained in many ways, but no amount of apology satisfies a disappointed customer. The housewife who waits all day for the service technician who never shows up, is not interested in explanations. Especially if she had something important to do, and changed her plans to keep the appointment.
It may be unfair to place the entire burden on the servicing industry. Where extenuating circumstances prevent keeping a promised date the courtesy of a phone call requesting a change of appointment is imperative. Regardless of how busy you are, or how difficult it may have been to procure a certain replacement part-both common excuses for broken promises-the customer is always right. It's an axiom of good public relations, and there is no way around it. The TV service technician or small shop is hurt badly if labeled unreliable. It reflects on his competence, too.

[^3]In the TV servicing business word-ofmouth advertising by the public can do much good or harm. The smaller the community, the more important this is. Even in large metropolitan centers, experience has shown that good publicity over the canasta or bridge table can help a small service shop grow, or drive it out of business and make the large service facility even larger.

The small service-shop owner cannot wage an advertising or sales-promotion war with the large facility. He does not have the necessary funds; therefore, he must do everything that will make his customers speak in his favor. One of these is to keep the promise to call or to deliver. Since the service facility rather than the customer sets the time and day, it is a solemn responsibility on the part of the facility to see that it is kept. We know one TV set owner who was so angry because of a broken promise that he asked all of his friends in the neighborhood not to patronize the local service shop, in order to teach him a lesson.

The repeat call

The repeat call is treated as a nuisance by many service organizations. It is handled as if the service shop were doing the set owner a favor. It's considered a profitless call, but whose fault was it in the first place? On second thought is it really profitless? Not only does it create good customer relations, but every service facility takes into account a certain number of repeat calls when it figures the costs on which it bases its service charges. (If it doesn't do this, it should.)

Making customers wait for you to correct an unsatisfactory repair is a sure way to make them angry. People let off steam by talking; panning the daylights out of a TV service facility always finds ready listeners and sympathetic ears.
Some service outfits wilfully ignore repeat calls. They know that it means the loss of a customer, but they feel that there are others. They forget that a dissatisfied customer-particularly one whose complaint is justified-can do more harm to an outfit's reputation
than the praise of a dozen satisfied customers can possibly overcome.
We're not going to be so foolish as to say that there should be no repeat calls to begin with. Sometimes they can't be helped, but we do say they can be reduced substantially. Every wellconducted and well-managed service facility considers repeat calls a reflection on the technician who did the work. In some organizations he is not paid for making the repeat call. If too many occur, he's out of a job.

The fact that repeat calls are not asked for is no sign that every repair job was done properly. As self-protection, TV service shops should determine the customer's reaction to the repair a week or more after the receiver is restored to service.
Giving the public the benefit of the fact that they do not understand the workings of a television receiver, rather than condemning them for it, will reduce the widespread demands for legislation and licensing. The customer will respect a firm stand when a charge is warranted and the case is properly pre-sented-that is, without arrogance or insolence. But it is equally important to admit it when the shop is at faultnot necessarily by merely saying so, but by doing whatever is required to produce a properly functioning receiver. Servicing is a technical business, but it is not without its selling aspects. Politeness and understanding are essential.

Using service data properly

Repeat calls are costly on several counts. Not only in the time involved, but also because they imply technical incompetence. This has been the loudest cry on the lips of the TV-receiverowning public. It has to be anticipated in each new area, because fully trained and experienced personnel cannot be made available concurrent with the initial sale of TV receivers. But this is the industry's problem and not the public's. If receivers are sold, service should be available. If the servicing industry does not want competition from factory-service organizations, it must be ready for action when a new area opens up.

The set-buying public has the right to expect that the individuals who offer their services and facilities as TV service technicians have some sort of technical background. As a rule, these men are experienced radio service technicians. The main fault lies in the fact that many of them, in areas where TV is anticipated, wait until demand for TV service arrives before they make any move to acquire the necessary background. This has been the pattern time and again, and each time it has harmed not only the men themselves but the industry of which they are a part.

With radio servicing as a background, a knowledge of TV can be developed by reading-that is, if it is impossible to attend a school. Admittedly, a reading knowledge alone is of limited usefulness when work must be done-at least in the beginning -but it is better than no background at all. As time passes, more and more experience is gathered and the endproduct improves. In the meantime a definite mental attitude for selfimprovement must prevail. This has been lacking in many instances. Its consequences have been costly.

Every individual knows the extent of his capabilities. The more limited his experience, the more imperative it is for the TV service technician to use every device which will help compensate for this shortcoming. The most valuable of these are the service notes. There are many important reasons why TV-set-manufacturers' service manuals must be read and used. Not only for the schematies and circuit voltages, but for the circuit descriptions, installation and disassembly notes, manufacturers' production changes, and the trouble-shooting charts. Cures for troubles which may have appeared in a particular receiver, and which the set manufacturer has incorporated in subsequent production runs of that model, are also contained in these notes.

The less experienced the individual, the more vital this information is. It is paradoxical, but the more-experienced TV service technician makes greater use of the set-manufacturer's service manuals than the inexperienced man. The reverse should be true. Trial-and-error methods of servicing are costly to the beginner and to the public. The inexperienced technician spends hours doing what might be done in a fraction of the time.

How much repair time can a technician afford to spend on a TV receiver, and how much repair time can he charge for? How high can the labor charge be without arousing the ire of the public? How can the public be pacified when the so-called repaired receiver is not functioning properly? . . The answers to these questions lie in the full and proper use of the setmanufacturer's service manuals, in taking full advantage of the guidance which they offer, and in following the instructions which they contain. In addition, the proper use of service in-
formation increases your technical background. It compensates for limited experience or lack of school training.

The uncompleted repair job

When the public raises the cry of incompetence against the TV service technician, they group many things under one name. They hang the same label on the man who is careless as on the man who doesn't know. For example, tube failures are common faults in TV receivers. Simple tube replacements frequently correct a fault, but many times it is only a temporary repair. While time is of the essence in repair operations, the need for speed (and minimum cost) does not warrant a total disregard of other operations which may be necessary when a tube has to be replaced.

Tube failure may occur because of a defect in the circuit-the kind of a defect which eventually wears out the tube, but does not become evident immediately when a new tube is put into the socket. Perhaps thoughtlessness or carelessness on the part of the service technician accounts for his failure to make the necessary circuit tests. Or it may be that the service shop sets a time schedule for the field man which prohibits such tests. It is not uncommon for set manufacturers to recom-
 mend a circuit change in order to prevent frequent tube failures at one position in the receiver. The last item gets us back to the service manual again. Putting a new tube in this position will restore operation, but unless the circuit change also is made, the new tube will fail in a relatively short time.

Many tube replacements involve fre quency-sensitive circuits. Not all brands of tubes may function equally well in a particular circuit nor does the first few minutes of operation of a new tube in a circuit indicate the performance an hour later.

In frequency-sensitive circuits, mere tube replacement may not always be the complete answer. The circuit may call for readjustment in order that the receiver perform corvectly, not just "good enough." A complete readjustment may not be required, but the need for it should be checked. This increases the time spent on the job, and must be recognized in any field-service program which a service shop puts into effect. The lack of it accounts for some of the complaints that "After the service technician was here, the receiver did not function as well as before."

In any case operators in new TV areas should do everything they can to avoid such occurrences.

Replacement parts

Some service shops (not many, for-
tunately) have committed the unforgivable sin of using surplus parts as replacements in TV receiver repairs. This is too big a risk to take without knowing the history of the part, its age, or its electrical condition. The public and the set manufacturer have the right to expect better treatment. Using a part of this kind even occasionally, because it may not be convenient to get the exact replacement part, is no excuse. It just is not fit for this type of duty! It may work perfectly at first, but even this is no justification, because such a part cannot be guaranteed. If a service technician attaches any sort of a guarantee to a surplus part used for replacement purposes he should have his head examined.

We must stress one more point on the subject of replacement parts. This is the use of a compromise part as a replacement. By compromise we mean one that is not the exact equivalent of the part being replaced. This does not imply that every replacement part must be an exact duplicate. It is not always practical to procure exact duplicates and still satisfy the time requirements on repairs. But it should be standard practice to make certain that the replacement part you use fits the needs of the receiver to which it is applied; and that it does this without requiring major alterations on the chassis to accommodate the replacement part. The customer should not have to be charged for time spent in this manner.

Many replacement parts available on the open market from parts jobbers satisfy the physical and electrical performance requirements of the receiver. If they do not, get exact duplicates from the set manufacturers' distributor even if it means waiting for delivery. For its own protection, the servicing industry must pay closer attention to the replacement-parts situation. There is no such thing as "good enough" in this case. The public has every right to expect you to use the proper parts, and that they will perform perfectly.
Another point of deep concern to all service technicians and service shopsespecially those just beginning their activities in new TV areas-is the charge for replacement parts. Although there is no apparent reason why the TV servicing business should be seasonal, it has its ups and downs. It has its seasons of great activity and slow periods.

Active periods must provide operating funds for the bad times. This cannot be done unless service charges are high enough to return a profit, and the parts used in repairs are sold to the set owner at list price, so that the full margin of profit is realized. This is an absolute must. Service facilities can juggle the labor costs if they wish, in accordance with the level of efficiency developed in the shop, but the full profit must be made on the parts.
Some TV service technicians base their selection of replacement parts on
price alone. This is wrong. Price must be considered secondary to performance. The replacement part is paid for by the customer, and the technician should not lose sight of the difference in profit when the higher-priced item is sold. You are not taling advantage of the public if price reflects quality. Always bear in mind, whether buying or selling, that the best is the cheapest in the long run. If this approach requires greater selling pressure on the part of the service facility, then use it.

Improved techniques

Let's consider a few items that relate to servicing or trouble-shooting techniques. We say that these are native to old TV areas only because that is where TV now exists. The suggestion to improve techniques in TV areas yet to be opened fits the old areas too, because we think that many represent improvements that many old TV areas have yet to put into effect.

First there is the matter of capacitor testing. Leaky capacitors are a major item in TV receiver troubles. The standard procedure has been to check for low insulation resistance with an ohmmeter. This is not an adequate test. It can be misleading because the test conditions do not conform with the conditions of use.

The test voltage available in an ohmmeter is about 1 to 3 volts. In a few cases it may run as high as 30 volts. Even this highest voltage is not sufficient to show up capacitor leakage on an ohmmeter test, unless the insuiation resistance has fallen to a very low level. The result is that many ohmmeter tests indicate a good capacitor, but when the part is reinstalled in the receiver its operation is faulty because its insulation resistance may have fallen below the value permitted by the circuit voltage

The answer is to test for capacitor lealage by applying the same voltage as in the receiver, using a voltmeter and milliammeter as the indicators With this test the findings are conclusive, and much time is saved.

Another prominent trouble-shooting weakness which has demonstrated itself in old TV areas is in placing too much dependence on d.c.-resistance values of certain components-especially coils and transformers. This is especially true when low values of resistance are involved. The problems associated with the measurement of very low ohmic values-crowded meter scales, contact resistance, and tolerance in the parts-have caused many substitutions which were never necessary.
D.c.-resistance ratings of windings are average values, and can vary by 10% or more in many instances and not indicate a fault. On the other hand when the correct values are less than 1 ohm, a defect may not show up on a resistance test because an imperfect contact at a clip connection can add enough circuit resistance to offset the result of the fault.

An alternative, which will find increased application as suitable test equipment becomes available, is to measure an a.c. characteristic of the part Many of the specifications for inductor type components are in a.c. values. In the meantime, determine the condition of the component by measurement under signal conditions with a scope and vacuum-tube voltmeter. Unfortunately, these pieces of equipment do not see as much use as they should. Properly used, they save much time because they lead to positive conclusions. This, in turn, saves much more time that would ordinarily be wasted in removing and substituting components unnecessarily.

Another item which should interest service technicians in new TV areas is the limited utility of tube checkers as guides to the condition of tubes used in TV receivers. This comment does not deny the general utility of a tube checker; it is still an important item, but no test equals the simple substitution.
Many tubes will show O.K. on a tube checker, yet will not perform well in a multivibrator stage of the television receiver. The same tube will more than likely work perfectly in some other socket.

Another interesting item is the measurement of grid waveforms and peak-to-peak voltages in stages which depend on the drive for the bias.
As far as test equipment is concerned, the greatest weakness has been the failure to use the scope for these measurements. Although a great many scopes have been sold to the servicing industry, they are not used as much as they should be. The scope has tremendous capabilities, and anyone who is active in television servicing, yet who is not familiar with scope applications, is not taking advantage of the greatest timesaving device available.
It must be admitted that the trace on the scope screen requires interpretation, but unlimited reference information is available for guidance in service manuals. A cardinal requirement for TV service technicians is to gather data from experience-that is, to associate changes in waveforms with certain types of defects. This is not too difficult. Even if it requires spending some time in supplementary study, it is more than worth while, because it leads to faster, more economical servicing.

The bill for service

The usual form of invoice for se:vice submitted to the set owner by a TV service shop can be improved to make the life of the shop owner much easier. Making out a simple bill which lumps all the services into one sum and then shows the total price of the
parts replaced as another sum, places the shop at a disadvantage. This is especially true where there is a substantial charge for labor and time, and a relatively small bill foe parts.

The ratio between these two amounts is generally high-anywhere from 10 to perhaps 20 to 1 in favor of labor and time. The public just does not understand that the time and labor charge may not be any greater for replacing a $\$ 20$ part than for a part that cost only $\$ 1$. They cannot be expected to understand because no one has taken the trouble to tell them.

Recognizing the difficulty of educating the public, the best thing is to use the service bill for educational purposes. Make the bill show everything involved in completing the repair. Itemize the different operations sep-arately-travel time, removing the chassis from the cabinet (if necessary), inspection, pickup and uelivery, etc. Virtually every service job involves at least six or eight operations of this type. Show them all. Then list the charges for the parts replaced.

Making out bills in this fashion is the psychological approach. A $\$ 10$ time and labor charge doesn't look so bad with respect to a $\$ 1$ part, when handled in this fashion. It is a perfectly honest presentation. The additional time spent making out an invoice of this kind will save much explaining.

The points we have raised in this article are known to every person who has sold his services to the TV-set-owning public. Service facilities may have viewed some of them as relatively unimportant. This is completely wrong. Drops of water falling on a stone will eventually wear it away. Small things have irritated the TV set owner time and again. Patience will wear out in time.

The service technician views his activity as a profession. That is fine as far as it relates to ethics and pride in his work. But it is still a business, and the fundamentals of operation which are axiomatic in sound business must be practiced.

A number of actions of TV service facilities over the years have bothered the public. Men opening shops in new TV areas should learn from these. Public complaints have not always been just, but many of them are wellfounded. They are not beyond correction; it does not make good sense for new shops to follow in the footsteps of some of the old ones and repeat their failings. Every one should learn from -and profit by-the experiences of others!

NTSC
 This newest system combines the best features of several methods of color (5) television

 By EDWARD SIEMINSKI*

 By EDWARD SIEMINSKI*}

A
YEAR or so ago anyone who expressed a preference for a particular color-TV system ${ }^{1}$ was likely to find himself in the center of a heated argument. Now, at last, time and technical progress are clearing the air, and a new system-NTSC-has emerged out of the confusion.

Named after its sponsor, the National Television System Committee, the new system is the joint development of a broad cross-section of the radio-television industry.

NTSC background

NTSC was created in 1940 by the Radio-Television Manufacturers Association (then called the RMA) to assist the FCC in developing and formulating a set of standards for black-and-white television. These standards are now the basis of our present TV system.

The committee was reactivated in the late 40 's when the FCC was holding: hearings to establish standards for U.S. color television. Its new purpose was to gather background information on the general problem.

In 1950 the famous "Ad Hoc" (singlepurpose) Committee was set up under Dr. W. R. G. Baker for a concentrated study of the state of the art. It examined the work of several laboratories working on various systems of color transmission with the idea of deciding if one or more of their methods offered promise as a compatible color system. On the basis of the ad hoc report, the RTMA reorganized NTSC into nine panels made up of prominent engineers. In the spring of 1951 these panels launched an intensive and extensive program of organizing, selecting, and testing the best features of all color television systems. The panels will set

[^4]up system standards based on the results of these tests, and NTSC is expected to embody these in a formal proposal to the FCC in the near future. The work being done by NTSC has become an outstanding example of engineering co-operation and achievement.

Before going into the wondrous complexity of NTSC transmission let us first review the current status of color TV in the United States.

Field-sequential color TV

The present U.S. standard systemthe only one permitted for commercial color-TV transmissions-is the noncompatible field-sequential system sponsor'ed by CBS ${ }^{2}$. A program transmitted by this method cannot be displayed either in monochrome or in color on a standard television receiver without extensive circuit modifications (especially in the horizontal and vertical sweep sections). There is practically no audience for these color programs. This lack of a large audience discourages sponsors. Lack of sponsors discourages station construction. Without stations, there will be no audience, and without a prospective audience there will be no receiver production. As yet, no way has been found to break this vicious circle.

Engineeringwise the field-sequential system suffers fundamental handicaps. Briefly, it transmits three complete pictures in sequence: representing first the red, then the green, then the blue light picked up by the camera televising a color scene. However, the 6 -me bandwidth of a regular television channel is just enough to carry only one such picture in full detail. The necessity for trimming all three color signals to crowd them into this meager channel space results in degraded picture detail, objectionable flicker, and color instability with fast motion.

The field-sequential method does have
excellent color rendition and very desirable simplicity. Belaboring it here for its weaknesses is done only to indicate the room for improvement.

NTSC Color TV

NTSC transmission was born in the same ideas that inspired RCA's dotsequential system, but the NTSC system is not sequential. It is a simultaneous system, since the three primary colors in the picture are encoded electrically, not one after the other, but all three continuously. Many independent laboratories have contributed to its development.

It is a high-efficiency system, in which the equivalent of a 12 -megacyclewide picture (4 mc for each color) is transmitted within a 6 -megacycle-wide channel ${ }^{3}$, the same bandwidth used for conventional television.

In a nutshell, the new system transmits an ordinary black-and-white television picture, to which is added a modulated subcarrier signal conveying information about the coloring in the picture. From that viewpoint it could be called "colored" television. Although a color receiver is needed to display the colored picture, the system is compatible; that is, it will reproduce the picture on an ordinary television set in black-and-white (monochrome) without altering the set in any way.

Most of us have been taught that for a circuit to carry more information in a unit time the bandwidth of the circuit must be increased (provided the information is sent strictly in its original form, as in standard AM broadcasting) .

How does the NTSC overcome this rule? Theoretical analysis provides the answer. It shows that any conventional television scene, when translated into a video signal occupying a given channel, does not fill that channel space completely. In fact, there is a regular

Developmental model of color-television receiver designed to the NTSC proposals. Chassis at right is a power supply.

Fig. 1-Black-and-white TV signal sidebands form clusters separated by 15,750 . cycle gaps. N'TSC color-TV system uses these blank spots to send color signals.
series of vacant intervals in the transmitted frequency band. If the same theoretical analysis is applied to the color information of the televised scene, it, too, is revealed as a regular series of discrete frequency components separated by uniform gaps.

Obviously the gaps in the black-andwhite picture signal can be utilized for transmitting some other kind of information. Why not the frequency components of the color signal? The monochrome signal and the color signal are then said to be "interleaved." Fig. 1 shows a small slice of the frequency band of the channel, indicating how frequency components of the picture signal and of the color signal are spaced over the same channel bandwidth.

To utilize this method it is necessary only to select a color subcarrier frequency which is calculated by multiplying half the horizontal line frequency by any odd number. At this writing the NTSC subcarrier frequency is: $\frac{15,750}{2} \times 495=3,898,125$ cycles.

Fig. 2-Block diagram of the NTSC non-sequential color-TV transmitter.

On paper the idea may look fine, but does it work in practice? The answer is that it does-not perfectly, but quite acceptably. A fine-grain crawling checkerboard-like pattern is noticeable to anyone standing close to the picture tube and looking for it. The usual viewer does not see it, hence this interference is described as "low-visibility".

There is nothing quite as good as a block diagram for examining a complicated system. Fig. 2 is a simplified outline of the transmitter half of the system.

Color encoding

In Fig. 2, the camera supplies electrical signals G, R, and B, which correspond to the green, red, and blue components of the light in the televised scene. These separate color-signal voltages are combined in the proportions shown, to make up the luminance signal Y. The proportions of G, R, and B are based on the relative sensitivity of the human eye to light of those colors.

All information about variations in
brightness-that is, the detail in the televised scene-is wrapped up in the luminance signal. All information concerning the color in the scene is restricted to the chrominance signal.

Now for the encoding of the color. [1] The R, G, and B voltages are fed through low-pass filters which cut down the bandwidth, passing the equivalent of three degraded single-color pictures.
[2] Two of these, R and B, are added electrically to the luminance signal Y, whose polarity has been inverted to $-Y$, thereby creating color-difference signals $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$. A similar manipulation to obtain $\mathrm{G}-\mathrm{Y}$ turns out to be superfluous, for the following reasons: G information already exists in the Y signal. We transmit $R-Y$ and $B-Y$, and can easily extract $G-Y$ from these signals at the receiving end. Therefore there is no point in handling $G-Y$ since it is already present (although not apparent) in the transmitted intelligence.
[3] Continuing with Fig. 2, R-Y and $\mathrm{B}-\mathrm{Y}$ modulate two sine-wave volt-
ages which have exactly the same frequency but are 90° out of phase. The combined result, the chrominance signal, becomes a two-phase subcarrier, with each phase amplitude-modulated by picture-coloring information.

Our video signal is now complete, the luminance and chrominance signals providing all the information needed to reconstruct the color scene. A station transmitter handles it substantially as it would any normal black-and-white picture. Fig. 3 shows the makeup of the transmitted frequency spectrum.

The synchronizing signal is the same as the one used for monochrome television, except that a color-sync signal is inserted on the "back porch" of each horizontal sync pulse (Fig. 4). In the receiver this burst synchronizes the local "color oscillator" which is used to demodulate the color signals.

The receiver

At the receiver, Fig. 5, all circuitry up to the output of the picture detector is conventional.

Let us start with the band-pass filter. This rejects all frequency components of the signal except the region containing the chrominance signal (see Fig. 3). The output of the band-pass filter feeds separate red and blue chrominance demodulators. The color-difference signals $R-Y$ and $B-Y$ are extracted by reversing the process of subcarrier modulation at the transmitter. The local color oscillator supplies two sine-wave signals having exactly the same frequency and phase as the subcarrier which was used for encoding at the transmitter. (These oscillators are synchronized with the color subcarrier by the bursts mentioned above.) The demodulation is a zero-beat form of heterodyning sometimes called "synchronous detection".

In the matrix-circuit block the $\mathrm{R}-\mathrm{Y}$ and $B-Y$ signals are mixed in predetermined polarities and proportions to produce the $G-Y$ signal.

Finally, the three decoded color-difference signals are combined with the main luminance signal to reproduce the G, R, and B color signals which originally left the camera of Fig. 1. For example, adding $R-Y$ to Y leaves R alone. The R, G, and B voltages are applied separately to the tricolor picture tube to re-create the scene.

Color reproduction

The great advantage of the NTSC system lies in its economical handling of color information. In Fig. 1 we noted that the R, G, and B signals were each limited to a bandwidth of about 1 mc implying the transmission of a limited amount of coloring information. The luminance information (picture detail) occupies the full $4-\mathrm{mc}$ bandwidth.

This bandwidth relation makes sense when you understand how the eye sees.

Fig. 3, top-Relative positions of the picture carrier and the color subcarrier in the upper sideband of transmitted signal. The vestigial lower sideband and the sound carrier have been omitted. Fig. 4, next to top-Color-sync bursts consisting of nine cycles of the 3.898125me color subcarrier are sent on the unused "back porch" of each regular horizontal sync pulse. Fig. 5, above-Block diagram of the receiver color circuits. All sections of the receiver ahead of the color unit are conventional. Fig. 6 , right-Color combinations produced by blending colored lights (additive mixing).

Visible light produces three separate and distinct sensations: brightness (relative intensity or luminance), hue (recognition of red, orange, yellow, etc.) and purity or saturation (the degree to which the color is off-white, ranging from zero saturation, or white, to 100% saturation, meaning a deep, vivid color, a pure hue). The human eye is extremely sensitive to brightness variations but surprisingly insensitive to changes in hue. The NTSC transmits picture information only to the extent that the human eye is capable of appreciating it.

One more puzzling question, color mixing, deserves attention. The tricolor picture tube operates on the principle of additive color mixtures. A good example of this is a cluster of partially overlapping colored lights, as in Fig. 6. The overlapped areas show some examples of additive mixing. Mixing colored paints, or looking through superimposed color filters are examples of subtractive color mixing.

The phenomenon of color sensation is in direct contrast to the sense of hearing. Most of us can identify the instruments being played from the general character of the sound, and a trained musician can even recognize the individual notes which make up complex musical tones. The eye has no corresponding ability to recognize the individual components of a color mixture. The eye perceives only the overall result of the mixing. With the proper set of primary colors, such as the red, green, and blue used in NTSC, we are able to reproduce practically the entire range of colors.

A word about the color picture tube. without which the NTSC system would be almost entirely useless. The shadowmask type three-gun tricolor tube has received much attention. Rapid progress has been made toward one or more color-tube designs suitable for mass production at reasonable prices.

Receivers for the tricolor tube are being developed by several companies. The big problem is to simplify the circuitry.

Test transmissions with the NTSC system have been made in New York, Chicago, Philadelphia, and Syracuse. Assuming that transmission standards are successfully formulated and the FCC adopts the system, it would probably take at least two years before the NTSC system could become a commercial reality.

END

References

${ }^{1}$ Color Television Systems. Fred Shunaman, Raoio-Electronics, January, 1951, page 20.

2Color Television-U.S.A. Standard. P. C. Goldmark, J. W. Christensen, and J. J. Reeves. Proceedings of the I.R.E., October, 1951, page 1288.
${ }^{3}$ An Analysis of Color Television System. A. V. Loughren and C. J. Hirsch, Electronics, February, 1951, page 92.
${ }^{4}$ A New Picture Tube for Color TV. RadioElectronics, June, 1950, page 27.

Propagation

students
 and $d x$ hounds

 had an

 had an

 TV DX ${ }_{\text {in }}$

 TV DX ${ }_{\text {in }}$
 1952

interesting

year By E.P.TILTON, WIHDQ

EXPERIENCED TV dx observers and amateurs who watch the 50 mc band for signs of $d x$ all agree that 1952 was definitely subnormal in incidence of sporadic-E skip. For readers who may be just getting into this business of TV dx, sporadic-E skip is the means by which TV signals are bounced back to earth from the ionospheric E-layer, some 50 miles above the earth's surface, providing reception at distances ranging from 400 to 1,200 miles and more.
Ionospheric dx wasn't supposed to happen in the v.h.f. region, and the truth is that it occurs only a very small percentage of the time, but when it does develop it causes low-band TV signals to do amazing things. The reflection qualities of the sporadically ionized patches of the E layer becone well-nigh perfect at times, with the result that signals from hundreds of miles away may come in with unbelievable strength, knocking out or seriously interfering with local stations.

Many observers, both in television

and amateur radio, have tried their hands at predicting the occurrence of sporadic-E skip in advance. They have met with a measure of success, and more is being learned about this amazing phenomenon all the time, but it is still very much a horse race. Perhaps that's just as well, for if we were able to turn on our TV sets or our $50-\mathrm{mc}$ ham rigs at an appointed time to receive dx signals or work 50 me stations halfway across the country on schedule, both pursuits would soon lose their appeal.

Meanwhile, we have a fascinating hobby, and one that is being put to good use. By careful observation and recording, v.h.f. amateurs and TV dxers have made available great masses of data for scientific study. During 1952 the people listed at the end of this article have contributed several hundred individual observations of TV dx , summaries of which appear ingraph form herewith. A number of interesting facts are apparent from a study of these graphs.

A plot of the observations by months appears in Fig. 1. The upper portion shows the number of days that dx was observed; the lower shows the number of reports each month. Look back at a similar presentation ${ }^{1}$ for 1951 and see how symmetrically these graphs rise and fall, showing the now wellestablished rhythm of the sporadic- E dx seasons. The major period is the months of May, June, and July, but another well-defined peak develops around Christmas time. Both periods are spread equally either side of the longest and shortest days of the year. Despite this cyclic effect, dx never quite runs out; there is rarely a month when no dx at all is reported by the sharper observers.

The effect of frequency shows clearly in Fig. 2. Breaking the observations down by channels, we see that the lowest, channel 2 , accounted for 38% of the reports, with only 14% of the sta-

1 TV DX in 1951-Radio-Electronics, January. 195%, page 40.

Fig. 1, left-A year of sporadic-E dx by months. The November and December figures are for 1951. Fig. 2, right-Dx reports by channels compared to the number of stations per channel. Black lines are stations, colored ones reports.
tions in North America. Percentages of reports and stations are just about equal for channel 3. The most heavily populated channel, 4, with 38% of the stations brought in only 33% of the reports. Channels 5 and 6 together having the same number of stations as channel 4 , accounted for only 18% of the reports between them. There were no reports of high-band dx that could be positively identified with ionospheric effects.

Geographical location of the transmitting station is an important factor. Stations in the South and Middle West monopolize the top spots in the tabulation of reports by stations. As in 1951, KPRC, Houston, Texas, leads the pack by a 3 -to- 1 margin. The four Cuban stations, though their dx field is confined to little more than a $90-$ degree segment, are mentioned in 12% of the reports. Nearly half of the TV stations now using the low channels are above Latitude 40 , but they accounted for less than 33% of the dx reported.

Some outstanding reports

TV dx observations come from some surprising places, some of them localities where there is no regular TV service. Observer Canning, Halifax, Nova Scotia, is 400 miles from the nearest TV station, yet his log includes 44 stations in 36 cities. He is the holder of the Western Hemisphere dx record, having logged PRF-3, Sao Paulo, Brazil, in the summer of 1951.

A growing group of dx-ers in the Halifax area keep in touch with each other by telephone. During the height of an aurora borealis display on September 29, several of them noted that the signal of WJAR, Providence, R.I., channel 11, was strong on both sound and video, but the two could not be received simultaneously. This condition had been noted previously when selective boosters were used, but this time removal of the boosters made only a slight improvement. If this was the result of auroral conditions it is the first time that aurora effects have been noted above 200 mc .

Strong but fading signals were received on channels 3 and 5 the same evening. On September 5, a coastal inversion brought in signals from WBZ, Boston, 4; WNBT, New York, 4; WABD, New York, 5; WFIL, Philadelphia, 6 ; and WJAR, 11. Audio only was heard from WCBS, New York, 2, bearing out the observation that tropospheric effects increase with frequency.

Several multiple-hop dx observations (in excess of 1,500 miles or so) were reported during the summer peak. Leader in this department was Observer Royal, of Red Bay, Ala. Bob caught KRON, San Francisco, 4; KING, Seattle, 5; KSL, Salt Lake City, 5; KOB, Albuquerque, 4; KPHO, Phoenix, 5; and KTLA, Los Angeles, 5 , in a single evening. In a 24 -hour period, June 13-14, Royal identified 26 dx stations. Another Florida observer, Simkin, of Orlando, reports 48 stations
logged there, and another 11 picked up from a location in Arlington, Cal.
Florida Observers Hall of Miami and Sloan of Braden Castle, report fine tropospheric reception of the Cuban stations. Hall gets them more or less satisfactorily the year around, and Sloan pulls them through beginning in May. He also sees the Jacksonville station, WMBR, 4, most of the time over a 200 -mile hop.
To the average home viewer who looks at one or two stations for his TV entertainment, the totals of stations logged by the more avid dx enthusiasts seem almost incredible. Observer Lowther, Alexandria, Ind., lists 55 stations identified over a $31 / 2$-year period, including such choice high-band tropospheric dx as WJAC, Johnstown, Pa., 13, 350 miles, WNBF, Binghamton, N. Y., 12, 520 miles; and WJZ, 7, WOR, 9 , and WPIX, 11, all of New York City, more than 600 miles!
In three weeks ending June 15, Observer Merkel of Detroit logged 31 stations, 14 of them in the high band. Observer Dull, Washington, D. C., had 31 calls on his list. Then he took his equipment on a vacation in southwestern Pennsylvania in July and August, running up a total of 49 stations in two months. Patrick of Abilene, Texas, has 40 stations in 18 states, Cuba, and Mexico. DeGroat, Salamanca, N. Y., has 26 low-band dx stations Whitfield, Altoona, Pa., identified dx on 25 days between April 29 and August 13.

One of our northernmost observers, A. E. Wilson of Port Arthur, Ontario, logged a total of 25 low-band stations, all sporadic-E $d x$ with the possible exception of Chicago and the 'I'win Cities, which might be just in the tropospheric range under the best conditions. His most consistent dx reception was WSB, Atlanta, Ga., 2, with KPRC, Houston, Tex., 2, came second. Practically all of Wilson's dx came from the area represented by the amateur W4 and W5 call areas, as does a large part of the $50-\mathrm{mc}$ dx worked by our friends north of the border. Only toward the end of July was any eastern dx recorded.

Wilson noted interesting coincidence with weather conditions as indicated on weather maps telecast by several stations he received. On consecutive openings in June, weather maps showed pronounced cold fronts at right angles to the transmission path, just about midway between transmitting and receiving locations. On July 7, when WFMy, Greensboro, N. C., 2, was in solidly from $10: 30 \mathrm{pm}$ to midnight, a cold front extended along the line to the transmitting location. On July 27 , when a cold front swung around to the midpoint of the path, New York, Boston, Philadelphia, and Washington appeared. Both amateur and TV dx-ers have noticed that spo-radic-E skip is predominantly across areas of low barometric pressure; almost never in or across pronounced highs.

Unquestionably the most prodigious job of observation and reporting in 1952 was turned in by Louis M. Matullo, of Washington, Pa . He is able to do a phenomenal job of logging dx on both high and low channels from his 2,956 -foot elevation in Southwestern Pennsylvania. Under normal conditions Mike receives 20 or more stations over a radius of nearly 300 miles, around three-fourths of his horizon. He has kept a daily record of stations received for more than a year. They include 53 calls, 37 of which have been received without the aid of spo-radic-E skip. At least 18 different highband stations have been logged, including WENR, 7, and WGN, 9 , both of Chicago, nearly 500 miles away.

New receivers a factor

Much more high-band dx was reported in 1952 than in previous years, largely as a result of the improved high-band performance of the newer receivers. Increased awareness of the possibility of high-band dx was also a contributing factor. Observer Gehrlein, Erie, Pa., reports frequent reception of WSPD, Toledo, 13, 185 miles, and WXYZ, Detroit, 7, 165 miles. Runnells and Holmes of Ottumwa, Iowa, report WENR and WGN, 250 miles. MeGough of Milwaukee staggers us with KLAC, Los Angeles, 13, on June 12. We'd like to know more about this one, as it exceeds by several hundred miles the best amateur or TV dx ever reported on frequencies above 100 mc . It can happen, though- $200-\mathrm{mc}$ radar sets have picked up targets 1,700 miles distant!
The period September $7-10$ provided an unprecedented opportunity for highband $d x$ of a tropospheric nature. During that time amateurs using the 144,220 , and $420-\mathrm{mc}$ bands worked dx beyond their wildest dreams. ${ }^{2}$ The 9th was the biggest date, Matullo logging 37 stations at Washington, Pa., between $4: 30 \mathrm{pm}$ and 1:55 am the following morning! These included just about every high-band station to the south, west and northwest, within a radius of 500 miles. Landek, W9WOK, Bensenville, Ill., took time out from a big night of 144 -me amateur dx to \log 24 stations on 11 channels in 10 states: Illinois, Indiana, Wisconsin, Michigan, Ohio, Iowa, Missouri, Minnesota, Pennsylvania, and Tennessee. The best dx was WICU, Erie, Pa., 12, 450 miles.
This all came about as a stable highpressure center moved slowly across the Great Lakes and over to the Atlantic Seaboard, a stable air-mass boundary forming along its trailing, edge.
TV dx was not without its humorous sidelights. One unintentional joker was a publicity blurb writer for one of the leading TV manufacturers. In a release sent to magazine editors he credited a Colorado owner of one of his client's new consoles with the "world's record for long-distance television reception."

[^5]The viewer in question had reported picking up stations as nuch as 1,200 miles away! The staff at Radio-EldcTRONICS concludes that there is at least one person who doesn't read our TV dx reports!

And Observer Samuels, Mount Vernon, N. Y., says that the way of the TV dx-er is hard. Most people just don't appreciate it. When Dan called in his next-door neighbor to show off his reception of a Washington, D.C., station, over 200 miles to the south, the only comment was, "Lot of snow on it, isn't there?"

LIST OF OBSERVERS, 1952

Aliaga, Frank, El Paso, Tex.
Ambrose, G. W., Randallstown, Md.
Amery, Gordon, Braymer, Mo.
Asheraft, Calvin E., Coolidge, Ariz.
Baldwin, G. H., Hamilton, Ont.
Bashta, William, Los Alamos, N. Mex.
Bedrosian, Peter, Newburyport, Mass.
Bente, Waldemar, Dennison, Ohio.
Billings, R. A., Shiro, Tex.
Canning, L. A., Halifax, N. S.
Cantwell, William, Denver, Col.
Carnes, P. C., Orangeburg, S. C.
Collier, J. W., Arlington, Va.
Conover, R., Stone Ridge, N. Y.
Croy, John E., Dayton, Ohio
DeGroat, F. E., Salamanca, N. Y.
Dochak, Mike, Sudbury, Ont.
DeGeer, \cdot M. W., Tulsa, Okla.
Dempster, M. K., Tyndall, S. Dak
Dull, R. E., Washington, D.C.
Edens, L., San Antonio, Tex.
Elberburg, Columbus, Miss.
Evans, L. M., Gaylord, Mich.
Ferguson, G. A.; San Antonio, Tex.
Foyer, Joe, Westville, Ill.
Gandol, Jose, Preston Orierte, Cuba.
Garcia, Albor Otero, Varadero Beach, Cuba.
Gehrlein, "James, Erie, Pa.
Glenn, Quentin D., Carlisle, Pa.
Golden, S. J., Oak Bluffs, Mass.
Green, Vernon F., Saratoga, N. Y.
Green, M. F., Casper, Wyo.
Groves, A. L., Brooke, Va.
Hall, E. R., Miami, Fla.
Hammond, Clarence and Nina, Malin, Ore.
Hansen, Floyd, Waukegan, Ill.
Hart, Wm. C., Washington, Pa.
Hogan, Maryin H., Atlanta, Tex.
Huckert, Mrs. Joe, Hereford, Tex.
Henderson, Wayne, Sebring, Ohio.
Kern, Roy, Scranton, N. Dak.
Kindervater, John, Pottstown, Pa.
King, Virgil, Springfield, Ohio.
Kinney, Thomas A., Shelby, N. C.
La Bella, Victor, Middletown, Cónn.
Landeck, John, Bensenville, Ill.
Lowther, G. W., Alexandria, Ind.
McGough, Robert, Milwaukee, Wis.
McKinney, J. J., Indianapolis, Ind.
McLaughlin, C. F., Birmingham, Ala.
McPherson, Ross, Woodstock, Ont.
Markle, Leonard, Greenfield, Ill.
Mayernick, Joseph, Monessen, Pa.
Mays, A. J., Devol, Okla.
Manning, Walter, Milwaukie, Ore.
Matullo, Louis, Washington, Pa.
Merkle, Bob, Detroit, Mich.
Meyer, Sgt. Danile, San Marcos, Tex.

Dx Reports by Station and Channel

Channel 2, 54-60 me; 11 stations, 301 reports

KPRC, Houston, Texas 114	WCBS, New York City 24
CMQ, Havana, Cuba 32	WSB, Atlanta, Ga. 22
WMAR, Baltimore, Md. 28	WJBK, Detroit, Mich. 21
XEW, Mexico City 25	KNXT, Los Angeles, Calif. 7
WFMY, Greensboro, N. C. 25 KS2XBS, Chicago,	KTSL, Hollywood, Calif. 2 Ill. \qquad 1

Channel 3, $60-66 \mathrm{mc} ; 7$ stations, 84 reports

Channel 4, 66-72 mc; 30 stations, 258 reports

CMUR, Havana, Cuba 35	WHBF, Rock Island, Ill.
KRLD, Dallas, Texas 31	WNBW, Washington, D. C.
WKY, Oklahoma City, Okla. 30	WLWT, Cincinnati, Ohio
WMBR, Jacksonville, Fla. 17	WRGB, Schenectady, N. Y.
WTVJ, Miami, Fla. 17	WSM, Nashville, Tenn.
WTCN, Minneapolis, Minn. 15	WBKB, Chicago, 111.
XHTV, Mexico City 14	KOB, Albuquerque, N. Mex.
WTAR, Norfolk, Va. 14	WBEN, Buffalo, N. Y.
WOAI, San Antonio, Texas 13	WNBK, Cleveland, Ohio
WOI, Ames, Iowa 13	KRON, San Francisco, Calif.
WMCT, Memphis, Tenn. 13	WWJ, Detroit, Mich.
WDAF, Kansas City, Mo. 12	KNBH, Los Angeles, Calif.
WBZ, Boston, Mass. 12	WAVE, Louisville, Ky.
WNBT, New York City 9	XELD, Matamoras, Mex.
WBRC, Birmingham, Ala. 8	WGAL, Lancaster, Pa.

Channel 5, 76-82 me; 19 stations, 80 reports

Ft. Worth, Texas 23	KSD, St. Louis,
CMQ, Havana, Cuba 10	WSAZ, Huntington, W.
WOC, Davenport, Iowa.	WSYR, Syracuse, N. Y.
KTSP, St. Paul, Minn.	WABD, New York City
WTTG, Washington, D. C.	WAGA, Atlanta, Ga.
KFYL, San Antonio, Texas 5	WAVE, Louisville, Ky.
WNBQ, Chicago, 111.	WEWS, Cleveland, Ohi
KTLA, Los Angeles, Calif. 3	KING, Seattle, Wash.
KPHO, Phoenix, Ariz. 2	KSL, Salt Lake City, Utah

KPIX, San Francisco, Calif. 1
Channel 6, $82-88 \mathrm{mc}$; 11 stations, 57 reports

CMQ, Havana, Cuba 20
WDSU, New Orleans, La. 10
KOTV, Tulsa, Okla. 7
WTVN, Columbus, Ohio 5
WFBM, Indianapolis, Ind. 3
Millot, Dan, Louisville, Ky.
Mulligan, Eldon, Ottawa, Ont.
Nichols, Dan, Mason, Mich.
Oberto, G. P., Richmond, Va.
Patrick, M. C., Abilene, Tex.
Penc, Stanley, Utica, N. Y.
Randall, John W., Hanover, Mass.
Rees, Mackworth G., Naples, Fla.
Richards, Warsaw, Ind.
Robins, Howard L., Tampa, Fla.
Royal, Robert, Red Bay, Ala.
Runnells, R. J., Ottumwa, Iowa.
Sagel, Leslie, Wildwood, N. J.
Samuels, Dan, Mt. Vernon, N. Y.
Schmidt, Harry, Markham, Ont.
Seay, J. Chester, Dothan, Ala.
Simkin, Gordon, Orlando, Fla. and Arlington, Calif.
Sloan, S. W., Braden Castle, Fla.
Stanek, John A., New Kensington, Pa.

WTVR, Richmond, Va. 3
WHAM, Rochester, N. Y. 3
WOW, Omaha, Neb. 3
WFIL, Philadelphia, Pa. 2
WNHC, New Haven, Conn. 1
Storie, Clarence A., Tulsa, Okla.
Storch, Clarence L., San Antonio, Tex.
Smith, B. L., Sundown, Tex.
Tisdale, J. W., Tulsa, Okla.
Tisdale, J. W., N. Little Rock, Ar's.
Van Sandt, R. L., Ft. Worth, Tex.
Vanderstelt, Paul, Muskegon Heights, Mich.
Wallace, William, Santa Anna, Tex. Warren, Bud, Cocoa, Fla.
Waterhouse, F. T., Springfield, Mass.
Whitfield, Lawrence A., Altoona, Pa.
Wilcox, W. W., Richmond, Va.
Wilkerson, S. W., Vancouver, B. C.
Wilson, A. E., Port Arthur, Ont.
Walker, John L., Albion, Pa.
Yeager, Claude C., Wichita, Kan.
96 observers, representing 29 States,
plus Ontario, Nova Scotia, British
Columbia and Cuba.

TWO MORE U.H.F. CONVERTERS

The Zenith v.h.f.-u.h.f. turret tuner and Mallory "Inductuner" preselector

By FRED KING*

ZENITH sets now have a new turret tuner designed for top performance on both u.h.f. and v.h.f. channels. The over-all size has been reduced considerably, the channel strips are easier to replace, and special shielding and parts placement minimize oscillator radiation.

Fig. 1 shows the new tuner with all shields in place. The a.g.c., B plus, and heater leads terminate in a plug and the i.f. output terminates in a coaxial connector so that the entire unit can be removed from the chassis for repair or replacing channel strips without removing the chassis from the cabinet.
Fig. 2 is the tuner with external shields removed. Two sets of the removable channel strips are shown in the foreground. Those nearest the tuner are u.h.f. strips. The oscillator and interstage circuits are on the right-hand segments and the antenna-r.f.-input circuits are at the left.

Fig. 3 -a is a block diagram of the tuner circuit with a pair of v.h.f. channel strips in position. The triode section of the 6 U 8 is the local oscillator; the pentode section functions as the mixer. The twin-triode 6BK7 is a cascode i.f. amplifier. Fig. $3-b$ is a block diagram of the tuner with a pair of u.h.f. strips in position. All the circuit changes indicated in going from Fig. 3-a to Fig. 3-b are made by simply turning the turret from a v.h.f. to a u.h.f. channel.

Fig. 4 is a simplified schematic of the tuner on u.h.f. channels. There are two tuned circuits in the preselector and a tuned multiplier circuit. These three resonant circuits and the two crystals are mounted in a casting.
To cover all 70 u.h.f. channels the oscillator tunes from 172 mc to 234 mc . The germanium multiplier crystal acts as a harmonic generator to provide u.h.f. oscillator power for the mixer.

The germanium multiplier crystal is capacitance-coupled to the oscillator and conducts only on the extreme peaks of the oscillator sine wave. The

[^6]

Fig. 1-The new Zenith v.h.f.-u.h.f. turret tuner with shields in place.
resultant straight-sided pulses in the multiplier circuit are rich in oscillator harmonics. The tuned output circuit of the multiplier selects the desired harmonic and applies it to the crystal mixer to beat with the incoming signal. The oscillator's third harmonic (516702 mc) is used for the low u.h.f. channels and the fourth harmonic ($688-936 \mathrm{mc}$) for the high u.h.f. channels. The mixer crystal is biased to operate at its point of maximum sensitivity, so that minimum oscillator power is required. The output of the mixer is at the $41-\mathrm{me}$ i.f. of the receiver. The 6 BK 7 and the pentode section of the 6U8 become additional 41mc i.f. amplifiers to make up for the conversion loss in the crystal mixer.

The u.h.f. tuned circuits are very tiny. They are mounted in cylindrical holes in the casting about $1 / 4$-inch in diameter and $1 / 2$-inch deep. The antenna and multiplier coils are less than $1 / 2$ inch long and $1 / 8$ inch in diameter. Series-tuning capacitance for the preselector and multiplier circuits is provided by 1-72 machine screws which enter one end of each coil through an insulating bushing. The inductive coupling between the two preselector circuits is provided by a small pin pressed into a recessed hole in the casting between the two coils. The junction between the coils is returned to the casting through this pin, which is an inductance common to both circuits. The
casting shields the preselector and multiplier circuits from each other and from external influences.

The oscillator-interstage strip holds the oscillator coil with its disc ceramic capacitor, the cascode plate coil, and the mixer grid coil. The oscillator coil is adjusted to frequency by a small screw which enters the coil and changes its inductance. Each set of u.h.f. strips tunes over $1 / 3$ of the band, so three sets cover all 70 channels.

Performance data supplied by the manufacturer is as follows:

Frea. (mc)	Chaninel	Noise Figure (db)	Image Rejection (db)	i.f. Reisction (db)	Relative Gain (\%)
57	2	4.5	87	50	100
85	6	6.0	80	55	67
177	7	8.5	70	70	63
213	13	9.0	68	72	63
535	24	14.0	50	60	81
670	47	14.0	50	59	72
820	72	17.0	45	58	65

Mallory u.h.f. inductuner

As a result of considerable experience in the design and construction of variable-inductance tuning mechanisms, Mallory developed a special Inductuner for continuous coverage of the $470-890-\mathrm{mc}$ u.h.f. TV band. These u.h.f. Inductuners are available as one-, two-, three-, and four-section ganged units. The three-circuit model is shown in Fig. 5. Some manufacturers use these as the tuning systems in their converters.
ferent type sections. When used as preselectors with an external tank capacitance of $1 \mu \mu \mathrm{f}$, these units will tune the u.h.f. TV band with 10 mc to spare on each end. When used with a 6AF4 oscillator working on the low side of the signal, an external tank capacitance

Fig. 2-The Zenith separate coil strip tuner with shielding removed. of $1.5 \mu \mu \mathrm{f}$ is required.

TV-101 u.h.f. converter

Figs. 7 and 8 show front and rear views of the Mallory TV-101 u.h.f. converter chassis. The schematic is shown in Figure 9. The converterdesigned around a three-section Induc-tuner-covers channels 14 through 83. The antenna input impedance is 300 ohms, and the output impedance can be either 75 or 300 ohms. The popular line-up of preselector, crystal mixer, oscillator, and cascode i.f. amplifier is used. The gain is approximately 2 when used with the 300 -ohm input and output. The converter i.f. is 82 mc so that either channel 5 or 6 may be used.

Preselector

The preselector uses two sections (2 and 3) of the Inductuner to provide double-tuned selectivity and an impedance match ahead of the mixer. The preselector elements are shaped to track with the oscillator. The antenna coupling method is a compromise between energy transfer (from different types of antennas or lines), alignment problems, oscillator radiation, and noise figure. The r.f. chokes across the antenna terminals to ground act as static drains. They also act as capacitors in the u.h.f. band. Their capaci-

Each Inductuner section employs a parallel-lines tuning system with the lines consisting of edge-mounted strips pressed into grooves in a mica-filled, phenolic-base material which provides mechanical strength and excellent electrical properties. They are arranged in a noninductive concentric path providing the required inductance range in 270° rotation of the shaft controlling the shorting bar. There are three different types of sections: wide-strip; narrow-strip; and shaped-strip tuning sections, to provide proper tracking in the preselector, mixer, and oscillator resonant circuits. Shaping of the elements provides more accurate tracking for various converter intermediate frequencies at approximately 40,80 , and 130 mc . The rotor arm which holds the dual contactor (shorting bar) is fastened securely to a phenolic shaft. Two-, three-, or four-section units may then be used without interaction.

Fig. 6 shows typical frequency versus dial-rotation curves for an $82-\mathrm{mc}$ converter i.f. (channel 5 or 6). Measurements by the manufacturer show circuit parameters of individual Inductuner sections approximately as follows:

Distributed capacitance at maximum inductance $2 \mu \mu \mathrm{f}$
Maximum inductance $04 \mu \mathrm{~h}$
Q at $100 \mathrm{mc}$.
These values vary slightly with dif-

a

Fig. 3-(a) Block diagram of the Zenith tuner on v.h.f. channels. (b) Block diagram of the tuner circuit in one of the u.h.f. positions. Three sets of oscillator and preselector coil strips are reguired to cover all 70 u.h.f. channels.

Fig. 4-Simplified schematic of the tuner circuit in one of the u.h.f. positions.

converter.
Fig. 8 (Right)-Rear view of the Mallory TV-101. Drift is less than plus 400 kc at the
low end of the u.h.f. band. At the high end, it is less than minus 750 kc . When operated with an intercarrier sound v.h.f. set, the converter stabilizes in about one minute. With split-sound receivers, a warmup period of three to five minutes may be required.

Oscillator injection voltage for the 1 N72 crystal mixer is obtained by connecting to the 6AF4 heater, thus using necting to the 6AF4 heater, thus using pling to the cathode. This results in less interaction between the preselector circuits and the oscillator. Measurements have shown that the maximum oscillator radiation is less than 2,000 μv per meter at the top of the u.h.f. TV band and less than 600 uv per meter at the low end at 100 feet from the converter.

Converter i.f. amplifier

The converter i.f. uses a 6BQ7 twin triode tube in a low-noise cascode circuit. The mixer output is transformercoupled to the grounded-cathode first triode. Capacitance-coupling is used to the grounded-grid second triode. The circuit is neutralized by the r.f. choke in parallel with the grid-plate capacitance of the first triode. This choke also serves as the cathode return of the second stage.

The i.f. output circuit is a doubletuned transformer with a bandwidth of 14 megacycles at the half-power points with a center frequency at 82 mc . END
tance to ground serves as an impedance tap-in on the first tuned circuit.

Oscillator

 828 me on the low side of the signal to develop a converter i.f. of 82 megacycles. Temperature compensation, careful location of parts, and isolating the i.f. and power-supply tubes from heat results in a stable oscillator. The drift is substantially zero at 700 me. drift is substantially zero at 700 me. v.h.f. set, the converter stabilizes in \square

Fig. 9-Schematic of the TV-101 u.h.f. converter using the spiral Inductuner.

Local-distance switching plus

 more anti-noise sync circuitry

Fig. 1—Sensitivity-control switching in Motorola TS-400A TV chassis.

Fig. 2-Local-Distance switching used in Olympic TV models 762,783 , and 967 .

M
ANY modern television sets have auxiliary controls on the back for adjusting the sensitivity for optimum performance in weak-, medium-, and strong-signal areas. Fig. 1 shows the area-control circuit used in the Motorola TS-395A and TS-400A chassis. Slightly different versions are used in other late Motorola receivers. The local, suburban, and FRINGE settings adjust the sensitivity of the receiver for strong, medium, and weak signals, respectively.

In the local position, iull a.g.c.taken from the video detector outputis applied to the first and second video
i.f.-amplifier stages and through a 1.5megohm isolating resistor (R 1) to the r.f.-amplifier and mixer grids in the tuner. In the suburban position (that shown in Fig. 1) a.g.c. voltage is removed from the tuner, and the r.f.amplifier and mixer grids are returned to ground. The FRINGE position is used when the incoming signals are weak, and the set must operate with maximum sensitivity. This grounds R1 and lowers the a.g.c. voltage on the i.f.amplifier tubes to one-half the value applied in the LOCAL and suburban positions. In this position the video amplifier grid resistor is returned to ground to improve noise limiting ahead of the sync take-off point. The area selector control should be adjusted to the position which gives the clearest and most stable picture on all active channels.

Olympic local-fringe control

The Olympic model 762 receiver has the local-fringe circuit shown in Fig. 2. When the switch is set to local (in strong-signal areas), the r. f. amplifier and first, second, and third videoi.f. amplifiers are supplied with the full a.g.c. voltage across the $8,200-\mathrm{ohm}$ video-detector load resistor. In this position the a.g.c. line is connected through a 1 -megohm resistor to the junction of a $100,000-\mathrm{hm}$ resistor and the contrast control. The arm of the control is grounded and the 100,000ohm resistor connects to plus 220 volts.

When the signal is strong, the contrast control is usually adjusted for maximum resistance in the cathode circuit of the video amplifier. This

Fig. 3-Noise-canceller sync circuits of G-E $21 T 4$ and $21 T 5$ television receivers.
grounds the a.g.c. line through the 1 -megohm resistor, and maximum a.g.c. voltage is used to reduce sensitivity and prevent overloading.

When the set is tuned to a weaker channel, the contrast control is moved up to reduce the bias on the video amplifier. A positive voltage now appears at the junction of the 1 -megohm resistor and the lower leg of the contrast control. This positive voltage charges the $0.22-\mu \mathrm{f}$ a.g.c. filter capacitor and bucks the negative a.g.c. ooltage across the detector load. This positive voltage (a.g.c. delay bias) prevents the a.g.c, voltage from reducing the circuit gain until the incoming signal is strong enough to overcome it.

Advancing the contrast control to compensate for weaker signals brings more of its resistance into the voltage divider circuit and increases the delay bias applied to the line. The bias varies from 0 to about 4 volts as the contrast control is varied from maximum to minimum setting. Thus, varying the control automatically sets the a.g.c. delay bias to the proper point for best operation. In weak-signal areas the switch is set in DISTANCE position, disconnecting the a.g.c. bus from the contrast control circuit.

Noise-immune sync circuits

In past issues, we have discussed some of the various systems which manufacturers are using to insure maximum sync stability in the presence of severe noise.*

Now let's look at Fig. 3 which shows the G-E noise-canceller circuit used in the 21 T 4 and 21 T 5 models. The circuit is designed to prevent noise from entering the sync-clipper circuit and causing loss of sync through premature triggering of the sweep oscillators.

The composite video signal from the video detector is fed through a cascaded two-stage video amplifier into the grid of the picture tube along with any noise pulses which may be picked up with the signal. The negative-going sync pulses and noise (e) are tapped off the grid of the picture tube and fed to the grid of the sync amplifier ($1 / 2$ 6SL7-GT). This combination of noise and sync pulses is amplified and appears with positive polarity at the plate of the 6SL7.

At the same time that the amplified noise and sync pulses appear at the grid of the sync amplifier, the unamplified negative-going noise and syne pulses (a) from the video detector output are applied to the cathode of the $6 \mathrm{AQ7}$ noise-canceller tube through a $1-\mu f$ coupling capacitor. The grid of the 6AQ7 is biased negatively from the a.g.c. line. The cathode is biased positive by returning it to a point on a voltage divider composed of $\mathrm{R} 1, \mathrm{R} 2$, and the picture stabilizer R3. Control R3 is set so the 6AQ7 is biased to cutoff until the negative-going noise pulse

[^7]

Fig. 5-Stromberg-Carlson receivers use this keyed noise-clipper sync circuit.
on the cathode exceeds the amplitude of the sync pulses. R4 is a load resistor common to the 6SL7 and 6AQ7. The 6AQ7 operates as a grounded-grid amplifier with input and output signals in phase. Since the two output signals are of opposite polarity, the waveform across R 4 at any tim? will be the algebraic sum of the two signals. When the 6AQ7 conducts, it shunts the output of the sync amplifier and prevents any signal from being fed through to the syne elipper.

Waveforms a, b, c, d, and e show the operation of the circuit. Waveform a is the unamplified composite video with a superimposed noise burst. The waveform at the plate of the 6AQ7 during conduction is shown in waveform b. The pattern at c would appear at the plate of the 6SL7-GT if the 6AQ7 were heavily biased or removed from the circuit. The pattern at d shows the result of combining the waveforms at b and c in the common load resistor R4. When the noise-pulse duration is
longer than the time of several horizontal lines, all sync information is wiped out, but syne is not lost because of the flywheel characteristics of the sweep generator.

RCA noise-suicide circuit

A number of recent RCA TV receivers employ a noise-suicide circuit which prevents noise from causing vertical jitter in weak-signal areas. The video i.f. amplifier strip is designed so the grid of the fourth vidco i.f. tube (Fig. 4) does not draw grid current with normal signal levels. However, strong noise pulses drive the grid positive.

Each time a noise pulse arrives, grid current flows, and negative pulses appear in the plate and screen-grid circuits. The negative pulse across the $47,000-\mathrm{ohm}$ screen resistor (R1) is tapped off and fed to the grid of the vertical syne separator ($1 / 26$ SN7-GT) through an R-C network consisting of a $.033-\mu \mathrm{f}$ capacitor and 100,000 - and
$47,000-\mathrm{hm}$ resistors in series.
The negative noise pulse ir the plate circuit of the 6 CB 6 is rectified by the video detector. The noise pulse next appears as an amplified positive pulse in the plate circuit of the 6AG7 video amplifier. This positive pulse is also fed to the grid of the vertical sync separator. The amplitudes of the positive and negative noise pulses are such that they cancel in the grid circuit of the vertical sync separator. Thus, noise is suppressed before it can reach the vertical oscillator and cause instability.

Another interesting feature of these sets is the use of separate vertical and horizontal syne separators. These provide better sync stability than do simpler systems in which vertical and horizontal syne signals are passed through a common separator-amplifier system.

Keyed noise clipper

To minimize the effects of noise bursts on the stability of the sweep oscillators, Stromberg-Carlson uses a keyed noise clipper in a number of its receivers. A typical circuit is shown in Fig. 5. The composite video signal is applied to the grid of V1 so the positivegoing sync pulses arrive at the same instant that positive pulses (from the horizontal output circuit) are applied to its plate. This combination of positive pulses on plate and grid causes V1 to conduct. C1 charges rapidly to the peak of the syne pulses through the output resistance ($1 / \mathrm{gm}$) of the cathode follower noise reference tube V1. In the absence of pulses on the plateabout 90% of the total timo-C1 tends to discharge through R1 in series with the internal resistance of the video amplifier. However, the time-constant of the discharge circuit is so long that the next sync pulse arrives on the grid before the charge on C1 can drop appreciably from the level of the sync tips.
The cathode of the 6AL5 diode noise clipper is biased positive to the level of the sync tips by the charge on C 1 . Noise pulses which exceed the sync level cause the diode to conduct and short-circuit the excess noise voltage to ground through C1 so it cannot appear at the input of the sync separator. The clipped portion of the noise pulse does not contribute substantially to the

Fig. 6-Automatic width-control circuit in some recent Philco television models.
charge on C1 because R3 gives the charging circuit a time-constant which is long compared to the duration of the noise. Besides, any noise voltage which may be added to C1 will leak off through R1 and the video amplifier, so the charge on C 1 is about normal when the next sync pulse arrives from the video circuits.

The noise pulse sees the grid-cathode circuit of V1 as a diode whose operation and characteristics are similar to those of the clipper diode. R2 in series with the grid of V1 gives the gridcathode charging path a time-constant which is too long to permit noise to cause a substantial increase in the voltage across C1.

The ability of the noise clipper to distinguish between noise and sync pulses depends on maintaining the charge on C1 equal to the peak of the sync pulses. Its effectiveness in this operation is determined by the ratio of R 2 to $1 / \mathrm{gm}$.

Automatic width control

Adjusting the brightness control on a TV set varies the bias on the picture tube and causes the beam current to change. If the second anode is supplied from a source which has poor regulation, the changing beam current shifts the load on the surply and causes the second-anode voltage to rise or fall. Increasing the bias on the picture tube-for a darker picture-lightens the load on the supply and the high voltage rises. This causes the picture to shrink. Decreasing the bias to give a bright picture increases the load on the supply, the high voltage drops, and the picture tends to expand since the reduced velocity of the electron beam makes it easy to sweep over a large area.

Philco TV receivers using the type 71 or 42 r.f. chassis and G-1 or G-2 deflection chassis incorporate a circuit whi h tends to keep the picture width constant regardless of the setting of the brightness control. The simplified circuit is shown in Fig. 6.

The grid and cathode of the picture tube and the screen grid of the 6BQ6GT are supplied with voltages from two voltage dividers connected in parallel across the 240 -volt B plus line. Both divider's return to ground through the arm of the brightness control. When the control is set for minimum brightness (maximum bias on the picture tube) the grid of the picture tube is at ground potential and its cathode is approximately 90 volts positive. This lightens the load on the high-voltage supply and the picture would expand if it were not for the fact that at this setting the 6 BQ 6 screen voltage is reduced to 120 . This lowers the high voltage just enough to compensate for the increase brought about by the higher picture-tube grid bias.

Setting the control for maximum brightness raises the 6BQ6 screen voltage to 140 to compensate for the drop in high voltage when the bias on the picture tube is reduced.

EQUIPMENT INVESTMENT

ARADIO-TV service technicianlike the biggest industris' corpora-tions-has a large part of his money tied up in tools and test equipment that either wear out in normal use or become obsolete as new methods or better devices come on the market. One 0^{*} the vital dollars-and-cents factors that Big Business knows-but that the average technician doesn't even drea.n aboutis that it doesn't pay to use your equipment past a certain point in its life, even though it may still be quite serviceable. Industrial engineers get fat fees for figuring out the point where it actually costs less to buy brand-new equipment than to continue using the old. You can do your own engineering with just a little simple arithmetic.
The Gawler-Knoop Co., of Caldwell, N. J., Wyncote, Pa., and Silver Spring, Md., have condensed the whole procedure into a few simple steps. Figures are based on an expected life of 10 years for electronic test equipment, an 8% return on your original investment, and a maintenance cost of 5% per year, with no salvage value at any time. (While these conditions apply more to laboratory instruments that get the best of care than to service-type equipment, the shorter life in service work is offset by the fact that your used equipment usually has some resale or trade-in value.)

OLD EQUIPMENT

NEW EQUIPAENT

If L is larger than K minus F, the new equipment will pay for itself in less than one year. $\mathrm{L}-(\mathrm{K}-\mathrm{F})=$ annual savings from use of new equipment.
Note: As an example, a $\$ 1,000$ purchase of new equipment is worth while to replace equipment 5 years old which originally cost $\$ 500$, if the new gear will save 24 minutes per day with labor at $\$ 1.50$ per hour.

END

TELEVISION? it's a cinch!

By E. Aisberg

Translated from La Télévision? . . . Mais c'est très simple! by Fred Shunaman

First conversation: Frequencies, v.h.f., and video.
Will-Ken, I need some advice for my Uncle Jack.
Ken-O.K.-something about his radio, I suppose?
Will-Not exactly. He's interested in television now. He's had a bad attack of arthritis, so he hasn't been able to get out of the house for a couple of months. You know what a movie fan he's always been. So now that he can't get out to see five pictures a week, he wants to get a TV set to bring the movies to him.

KEN-Good idea! I'll be glad to lend a hand. Let's drop over to your uncle's right now, and see where we can put up the antenna.

Will-That's not going to be so easy. Didn't you know my uncle has been living in northern Maine for almost a year now?

Ken-Why didn't you tell me? You'd better just get your uncle a case of aspirin. He won't get television in northern Maine-at least not till we get a few more stations.

Will -Why not? What about the programs from the Empire State Building?
Ken-He can't even get programs from Massachusetts stations. Sixty miles is about as far as you can be sure of getting dependable TV reception. Sometimes you may pick up programs a lot farther away. But your uncle in northern Maine hasn't much chance of getting entertainment out of a TV set.

The earth is round

Will-If TV stations don't get out any better than that, why don't they increase their power?

KEN-Because it wouldn't help-much. Most television is transmitted between 54 and 216 megacycles, in what they call the very-high-frequency band-between 30 and 300 megacycles; or on ultra-high frequencies, which means in the spectrum between 300 and 3,000 megacycles. The u.h.f. TV band runs from 470 to 890. Now, the higher you go in frequency-or the shorter the waves get, if you like to put it that way-the more they act like light waves. Longer radio waves -like those in the broadcast band-can bend and follow the curve of the earth, but v.h.f. waves travel in straight lines and can't get around the bend in the earth's surface.

WILL-Does that mean that the receiving antenna must be in sight of the transmitting antenna to pick up TV signals?

Ken-Well, not quite. Of course, what the engineers call "optical visibility" is best for reliable reception. But v.h.f. waves are a lot longer than light waves and are not quite so set on following a straight line. V.h.f. waves do reach a little beyond the visible horizon, and can curve around small obstacles.

Will-Wait a minute! I think I get it. Because the earth is round, its curvature hides the transmitting antenna after a certain distance. The waves travel in straight lines, so they just keep on going over our heads and out into space?

Ken-You've just described in one sentence what has been called "The Tragedy of Television."

Will-Why "tragedy"?
Ken-Because that's what makes it tough or impossible for large areas of

Abstract

Readers of Radio-Electronics can start with this issue what is probably the world's greatest book on the fundamentals of television. It has already been published in the original French, in German and in Spanish, and is in process of translation into Italian. The author, E. Aisberg, is the publisher of the French magazines Toute la Radio, Télévision, and Radio Constructeur et Dépanneur. He has also written many books on electronic subjects, including the famous La Radio-Mais c'est tres simple! to which this book is the television sequel. Television-It's a Cinch! is translated from the original French by special arrangement with M. Aisberg. Radio-Electronics has the exclusive North American rights for the translation of La Television? . . . Mais c'est tres simple! and no extract from it may be published without our permission and that of Mr. Aisberg.

the country to get good TV service. The transmitting range is so short that it would be too costly to put up enough stations to cover the whole country.

Getting up in the air

Will-Isn't there any way of getting around this "tragedy"? Maybe people who live too far from TV stations could find some way of hooking onto those waves that are going by way over their heads. Why couldn't they use kites or captive balloons to hold up their antennas?

Ken-I don't think any TV set owner has gone that far, but some communications companies use antennas on captive balloons (Kytoons) to test sites for antenna towers. Most TV stations try to get their antennas as high as they can, though. That's why you see television antennas on the Empire State Building, on Mount Wilson, and on other such high points.

Will-So you see there is a way out! Why do they make such a good start and then stop short?

Ken-I don't get you.
Will-Why don't they put the transmitter in an airplane, and get up even higher? A plane flying around in the stratosphere could cover a quarter of the country, and my uncle Jack could see his flickers!

Ken-Congratulations, Will! You've just invented stratovision. That's what Westinghouse called just such a system some years ago. But they don't seem to have got it on a practical basis yet.

Shedding a little light

Will-Then why in blazes do they have to keep television on such short waves? Just because it's so new is no reason for putting it in the third subbasement. Can't we reallocate or shut down three or four broadcast stations or commercial transmitters and put TV on the short or medium waves-where it really ought to be? Just think, if we only had one wavelength in the broadcast band we could put up three or four stations strong enough to cover the whole country. .

Ken-You're off the deep end that time, chum! Getting TV into the broadcast band would be about as easy as getting an elephant into a snailshell.

Will-What's the connection between an elephant and television?
Ken-Easy, boy. Sit back and relax. Now think about the signals you get on your AM receiver. You have a carrier that sort of takes an audio signal along on its back. How wide a band does that need?

WILL-Well, the lowest audio notes are around 30 cycles and the highest about 15,000 cycles. I know for a fact, though, that most AM stations don't modulate much above 7,500 cycles.

KEN-In other words, when you remember that you have the audio signal on both sides of the carrier, most AM stations have a bandwidth of 15 kilocycles. Did you ever stop to figure out why an AM station should be limited to 15 kc ?

Will-I may not know all the reasons, but the most important one is to cut down interference on adjacent channels. You couldn't get much above 5,000 cycles with the equipment they had when broadcasting started, and frequency allocations were made on that basis. Now the official signpost is 7,500 cycles for each sideband. Lots of stations go beyond that today, if they can do it without causing too much interference on neighboring channels. What's all this got to do with TV?
Ken-Plenty! But first, have you any idea of how television images are transmitted?
Will-Of course! You can't transmit a whole picture at one time, so it's broken down into very tiny elements and then these elements are transmitted successively . .
KEN-Whoa! You lost me there, chum! What's this with "elements" and how do you mean "transmitted successively"?
Will-Ever look real close at a picture in a newspaper?
Ken-Yes.
Will-And it looked like what?
Ken-Like a bunch of dots-some light, some dark.
Will-It's the same in TV. We take a picture and break it down into little bits, some light, some dark. Only we don't call 'em dots, we say elements (or sometimes points)

KEN-And this business about "transmitted suecessively"?
Will_That's just the way the engineers say "one after another." The television transmitter changes each element into a voltage. Transmission is negative ...
KEN-Hold it again! Just what is "negative transmission"?
Will_It just means that the dark part of a picture produces more voltage than a light part. A black element produces the strongest voltage.

Ken-And a point that isn't so black?
Will-Just that much less.
Ken-And what if you have just a white space?
Will-You can't catch me on that one. A white space gives zero voltage.
Ken-Or at least a very low one. But how do we manage to pick out all the points of a picture and then transmit them one after another?

Will-Easy. A scene is scanned exactly like you'd read the lines on the page of a book. You could think of each letter as an image element. All the lines on a page are scanned one after the other to form an image. When we've finished one page, we start scanning the next one . . .

Ken-Correct! And how fast is this "reading" done?
WILL-Well, the pictures have to follow each other fast enough so the eye sees one continuous moving picture. The movies use 24 pictures a second. In television they follow each other at the rate of 30 a second.

KEN-Or about half a minute to read "Gone with the Wind"! But we're getting away from why we don't have a TV station in the broadcast band.

Will-Go ahead. I'm listening.
Ken-We've agreed that the voltage produced by any picture element depends on how dark it is. So when we transmit a signal that describes all the elements of a television scene, we're going to jump around from a very large voltage for a dark element to a very weak voltage for a bright one. And we're going to transmit all the elements of a complete picture in $1 / 30$ th of a second. Does that mean that the sidebands will be very wide?

Will-Does it?
Ken-It certainly does! This signal that expresses the brightness of each element in a TV picture is called a video-frequency signal. It's really a wide band of frequencies-something like the audio frequencies in an AM receiver.

Will-I suppose it can even be zero frequency sometimes. If you televise an all-white or all-black surface, all the little elements will be the same, and will produce the same voltage while the whole surface is being scanned.

Ken-That's true. But if the elements along the line being scanned are not all of the same brightness, the signal voltage varies. Now, when is that variation fastest, or in other words, when will we get the highest video frequency?

Will-Probably when a lot of adjoining elements in a line differ in brightness.
Ken-Exactly. The frequency is maximum when we scan a line composed of elements which are black, white, black, white, successively. The highest frequency you could get would be with an image made of black vertical lines one element wide, separated by white intervals, also one element wide.
Will-Then each element would give us one cycle of signal, and . . .
Ken-Easy, boy, easy! A white bar produces a very weak voltage and a black bar a very strong one. So scanning two adjoining elements-one black and the other white-produces a weak and a strong voltage. As we scan, the voltage alternates from weak to strong, back to weak, and so on. It takes the two bars, one black and one white, to make one cycle. And since one cycle can interpret two elements of the image, the total number of cycles . . .

Will-Is half the number of image elements!
KEN-This time you're right.
(To be continued)

UHF circuitry

\squareCHEMATICS of some of the u.h.f. tuners and converters are printed here for the technicians who will meet them shortly-if they have not already been called on to service thera. The large circuits on this page (Crosley u.h.f. chassis 391 above and Sylvania 1-506-1 u.h.f. converter below) are based on the Mallory u.h.f. continuous tuner. The little diagram between them is the newer Standard Coil u.h.f. strip. Some of its components are electrical rather than physical. C2, C3, and C4 are cal acitances between the brass screw and silver tab on the ceramic cnil form. C6 may be 5 uncf or 2.2 u uf depending on the channel. L4, C4, and C 1 form a circuit tuned to the 2nd, 3rd, or 4th harmonic of the local oscillator.

The circuit at the top of the page is the RCA u.h.f. selector U70. It covers the whole u.h.f. spectrum from channel 14 to 83. Its output may be on either channel 5 or 6 , at 300 ohms, while the u.h.f. input may be either 75 or 300 ohms. (V.h.f. input is specified as 300 ohms balanced.) The TV receiver may be plugged into a receptacle on the selector, so that both v.h.f. receiver and selector can be operated by the selector's "on-off" switch. To receive v.h.f. programs, the switch is turned to v.H.F., which turns the selector on and puts it in stand-by condition. For u.h.f. signals, the switch is turned to U.H.F. and the v.h.f. receiver set to channel 5 or 6 .

The schematic in the center is that of the G-E UHF-103 Translator described briefly in last month's issue ("More u.h.f. Converters", page 52).

Circuit at lower left is the RCA U1 (U1A, U1B), an adءpter which permits receiving any single u.h.f. TV station when employed with a v.h.f. receiver. Its output is also on channel 5 or 6. U1A has a 7-pin miniature adapter socket for use with sets having a 6AQ5 audio output stage; U1B has an octal socket for use with a 6 K 6 or 6 V 6 output socket.

Diagram at lower right is the tuner used with the Sylvania chassis 1-510-2 and labelled in their schematic "Sarkes Tarzian u.h.f. tuner."

The RCA U2 above permits reception of any two u.h.f. TV stations (within range) when used with a v.h.f. receiver. It has four switch positions: UHF, UHF, vHF, and OFF. Either channel 5 or 6 may be used as the first i.f. The oscillator operates in the $200-300-\mathrm{mc}$ range, and the second or third harmonic of the oscillator is applied to the crystal mixer. Normally the second harmonic is used for channels 14 to 46 and the third for 47 to 83 .

Like some of the other RCA con-

All Channel Antenna Corp.
70-07 Queens Blyd.
Wondside 77, N. Y
Motorless all-direction, high-gain, broad-band, v.h.f. and u.h.f. an tennas: bi-directional doubledouble V's; turnstile antennas, biconicals with mirror-image reflectors; super-directional fans, folded high-folded low, straight high-straight low, antennas; fan dipoles; v.h.f. and u.h.f. 5-, 8and 10 -element Yagis; special u.h.f. high-gain reflectors; spe-cial-purpose antennas. 32 mod els. Masts; antenna switches.

Alliance Mfg. Co

Lake Park Blvd.

Alliance, Ohio
Antenna rotators.
Alpar Mfg. Corp.
1486 El Camino Real,
San Carlos, Calif.
Standard aluminum vertical antennas or antenna towers in two types: tubular TV and amateur type in 12-foot sections to rise 132 feet; triangular broadcast and communications type in 12 foot sections to rise 300 feet.

American I'henolic Corp

1830 S. 54 Ave.
Chicago 50, 111
In-line antennas, single-bay and stacked arrays, piggy-back and indoor antennas, u.h.f. antennas and reflectors. Lightning arresters, standoff insulators, and mast sections.

Antenna Products

3628 N, Lincoln Ave.
Chicago, Ill.
Folded dipole arrays, 5- and 8 element Yagi antennas; 6-, 8 -10- and 12- element conical arrays: single and stacked V's u.h.f. corner-reflector, Yagi, V and parabolic antennas. Thirtytwo antenna models. Masts, fittings, mounts, wire, accessories.

Baker Mfg. Co.

Evansville, Wisc.
Forty-foot tower; 20-, 30 - and 40-foot telescopic masts; double rock-up foot mount and peak roof mount.

Beacon Corp.

2846 Milwaukee Ave.

Chicago 18, Ill.
Spiral-type horizontal-element indoor antenna. One model, in aluminum or gold anodized finish.
Bell Television, Inc.
552 W. 53rd St.
New York 19, N. Y.
Amplified master antenna systems, individually engineered for each installation.

Birnbach Radio Cg., Inc.

145 Hudson St.

New York 13, N. Y.
Indoor flexible folded dipoles, u.h.f. antennas, aluminum ground wire, rotator cable, RG59/U coaxial cable, ground rods, loom, standoffs, guy wire, guywire kits, lightning arresters, filters, anchor bolts, mounting straps, clamps, couplers, switches.

Blaco Mfg. Co.

6541 Euclid Ave.
Cleveland 3, Ohio
Adjustable ground clamps and standoff straps.

Blonder-Tongue Laboratories
526-536 North Ave.
Westfield, N. J.
Line-amplifiers, mixer amplifiers, distribution units, line splitters matching transformers, line-loss equalizers, weatherproof housings, remote-control units.

Camburn, Inc

32-40 57th St., Woodside 77, N. Y Super-X conicals and biconicals, 5 -, 8 -. and 10 -element Yagis, window antennas, masts, indoor dipoles, Zoom-up antennas, straight-line and V antennas Installation accessories. Eighteen models.
Cass Machine Co.
691 Antoinette St.
Detroit 2, Michigan
Conical, single, stacked and double-stacked antennas; hi-low, in-line, and indoor antennas. Less mast or kit form. Side mounts, roof mounts, hardware. Thirty antenna models.

Channel Master Corp.

Ellenville, N. Y.
V.h.f. antennas including Yagis, broad-band Yagis, fan antennas, high-low combinations, and 10 element Yagis. U.h.f. triangular dipoles with or without screen, stacked V's, corner reflectors and Yagis. Combination u.h.f.v.h.f. antennas. Telescoping masts, triangular towers, and other accessories.

Copperweld Steel Co.

Glassport, Pa.
Ground rods, stranded guy wire, grounding wire, and single conductor antenna wire.

Davis Electronics

4313 W. Magnolia Blvd.

Burbank, Calif.
Special type all-channel v.h.f "Super-Vision" antenna. One model. U.h.f. antenna.

Easy-U'p Tower Co.

427 Romayne Ave.

Racine, Wis.
TV towers, three models: roof mounts. twelve models; antenna accessories.
Energy Farm Equipment Co.
Monticello, Iowa
Hydraulic sectional TV mast, compressed height 22 feet, extended height about 60 feet.

The Finney Co.

4612 St. Clair Ave., Cleveland, Ohio U.h.f. and v.h.f. ultra-high-gain fringe-area TV antennas. Communication and special purpose antennas.

Fretco, Inc.

1041 Forbes St.
Pittsburgh 19, Pa
Yagis, conicals, v.h.f., u.h.f. broad-band, collinear arrays, "Fretarays," corner reflectors, dipoles, special arrays, slot antennas. Sixty models.

Gadgets, Inc.

3629 N. Dixie Dr.
Dayton, Ohio
"Circlatron" indoor circular adjustable dipole.

Gee-Lar Mfg. Co.

1330 10th Ave

Rockford, Ill.
Single-, 2-, and 4-bay all-channel conical antennas. Three models.

Generall Cement Mfg. Co
919 Taylor Ave.
Rockford, Ill.
Single-, 2-, and 4-bay all-channel conical antennas. U.h.f. doubleX and special bow-tie conical.

Gleam Mfg. Co.

740 N. Leavitt St
Chicago 13, Ill.
Model-boat type indoor antenna. One model.

Gonset Co

801 S. Main St
Burbank, Calif
U.h.f. and v.h.f. fringe-area high-gain arrays. 375 -ohm and $450-\mathrm{ohm}$ open-wire line.

Don Guod, Inc.

1014 Fair Oaks Ave.

South Pasadena, Calif.
U.h.f. and v.h.f. lead-in, openline and sheathed against unfavorable atmospheric conditions. Two models (two colors each model). Interference traps and filters.
Hamilton Electronics Corporation

2726 Pratt Avenue.

Chicago 45, 111.
Impedance - matching, isolating couplers for operating two to six TV receivers from a common antenna. Three models.

Haydon Products Corp.

1801 8th Ave.
Brooklyn 15, N. Y.
Stationary and adjustable chimney. wall, roof, eave, and pipe mounts; galvanized and stain-less-steel strapping : mast-standoff and screw-eye insulators hardware. Forty models
Hi-Lo TV Antenna Corp.
3540 N. Ravenswood Ave.
Chicago 13, Ill.
Indoor, outdoor spiral antennas, v.h.f., high-low bands inductively coupled. Two models, with stand or window mount.

Hi-Par Products Co

347 Lunenburg St
Fitchburg, Mass.
Dipole-reflector antennas, single and stacked; conicals: double diamonds; 4 -, 5 -, and 8 -element Yagis: in-line antennas; Twen-ty-four models.
Holub Industries, Inc.
413 DeKalb Avenue
Sycamore, Ill.
Installation tools and hardware : masonry drills, lead-in clamps. screw anchors. wire strippers.

Hy-Lite Antennae, Inc.

242 E. 137 th St

New York 51, N. Y.
Wide-band-V, conical-V and conical antennas; low- and highband folded and straight dipoles single-channel 4-, 5-, 8-, and 10-element Yagis. Twenty-two models.

1 E Mfg.

325 N. Hoyne Ave
Chicago, Ill.
Wide- and narrow-band antennas, u.h.f. antennas, straigh conicals, fringe-area clover-leaf antennas.
Imperial Radar \& Wire Corp
4342 Bronx Blvd.
Bronx 66, New York
Open-line lead-in wire, openwire matching transformers, feed-through insulators; antenna and mast accessories.

Insuline Corp. of America
3603 35th Ave.
Long Island City, N. Y
Yagi, stacked-Yagi, biconical. stacked-biconical, conical stacked-conical, folded-dipole stacked-folded-dipole, simple-dipole, stacked-simple-dipole, fiex-ible-indoor, indoor-dipole, and window antennas. Masts, accessories, kits and preassembled units. Sixty-five models.

Javex

P. O. Box 646, Redlands, Calif

Custom-molded wall-plate antenna outlets in single-, double-triple-, switching and dual coupler types for flush mounting: antenna couplings, con nectors, polarized plugs and sockets, combination plugs sockets, terminals and junctions, feed-throughs, and antenna weatherheads.
Jerrold Electronics Corp.
26 th and Dickinson Sts.
Philadelphia 46, Pa.
Master antenna systems for apartment houses, dealers, and communities; single-channel and wide-band amplifiers: distribution amplifiers; solderless co-axial-line connectors; antennaand line-matching transformers; all TV distribution-system accessories.
JFD Mfg. Corp.
6101 16th Ave.
Brooklyn 25, N. Y
"Jet 283 " u.h.f.-v.h.f. all-channel conical, bow ties with straight reflectors, corner re flectors, and 6-element Yagis, ultra-V beams, rhombics, double and stacked V's. All-aluminum and part-aluminum conicals. single-stacked and 4-bay. Alland part-aluminum Yagis, singand part-aluminum Yagis, sin-broad-band, single-stacked and 4 -bay (in 5 -, 10 -element widespaced Baline models). 151 antenna models. Antenna kits. jumper bars, aluminum and steel telescoping masts. lock-joint and fitted-joint masts. Lightning arresters, single-channel boosters. two- and four-set couplers, preamplifying couplers, three- and four-way antenna switchcs. Mast mounts. Installation accessories. Wave traps. "NUT"' universal Standoffs. Over 600 TV products.

Jontz Mfg. Co

1101 E. McKinley

Mishawaka, Ind.

Towers. masts, and roof mounts.

Kay-Townes Antenna Co.

Box 586
Rome, Ga
Broadside arrays, end-fire conicals, double-reflector conicals, V's, and special types; five models. Masts, two types-24-foot and 34 -foot. Chimney mounts, roof mounts, installation accessories.
Kenwood Eng. Co., Inc.
265 Colfax Are.
Kenilworth, N. J
Eave, wall, and parapet antenna mounts. Antenna accessories and hardware.
LaPointe Plascomold Corp.
155 W. Main St
Rockville, Conn
Q-Tee, broad-band, v.h.f. (three
models--single, double, quad) heavy-duty Q-Tee (three mod els-single, double, quad) : Ultra Q-Tee, all v.h.f.-u.h.f. channels 2-83), (three models-single. double, quad). Ultra Q-Tee Suburban, broad-band v.h.f. fringearea u.h.f. (three models-sinre, double, quad)
V.h.f. antennas: single-channel 4-, 5-, 12 element Yagis; broad band collinear arrays; dipole and-reflector models, conicals Eighteen models. U.h.f. antennas: single-shannel, 8-and 12element Yagis; collinear, broadband arrays; side-by-side-stack collinear broad-band arrays broad-band primary-area V antenna and reffectors
Louis Bros.
3543 E. 16 th St.
Los Angeles 23, Calif
Conical, folded-dipole, Yagi, dou-ble-V, and all-channel u.h.f. and v.h.f. antennas. Masts and an tenna kits. Sixty-five models.
Mechanical Steel Tubing Corp.
1801 8th Ave.
Brooklyn 15, N, Y
Dualcote and Alumacote steel TV masts, 5 - and 10 -foot sec tions, $15-$, 18 -, and 20 -gauge Twenty-four models.

Mosley Electronics

2125 Lackland Rd
Overland 14, Mo.
Weatherproof lead-in entrances lead-in flush sockets: TV-antenna switches; 2-set TV couplers: open-wire accessories 300 -ohm transmission line plugs sockets, connectors and splicers rotator-cable connectors

Neal Electronics Co

505 Seminole

Huntsville, Alabama
Fise- and 10 -element extra-highGain Yagis; all-channel Yagi. U.h.f. Yagis, conicals. V's, and square-corner antennas now in process.
Ohio Aerial Co.
4553 Lewis Ave.
Toledo 12, Ohio
Conical antenna (triple front horizontal reflector bars) and stacked arrays. No distribution outside Michiman and Ohio.
Peerless Products Industries
812 N. 1'ulaski Road
Chicago 51, Ill.
Indoor adjustable dipoles. Three morels.
Penn Boiler \& Burner Mfg. Corp. Fruitville Road
Lancaster, Pa .
Sectional towers, 10 -foot sec tions. guy supported, to 100 feet and more; telescopic towers (with detachable hoist), 3 sec tions, guy supported, with maxi mum height of 29 feet plus pole heirht. Two models.
Philson Mfg. Co., Inc.
60-66 Sackett St.
Brooklyn 31, N. Y
Straight and folded dipoles, coni cals, Yasis, double-V's, in-line antennas, and mounting brackets. Six different antenna types.
Plymouth Electronics Corp.
50 Kingsbury St
Worcester 10, Mass
Roof, wall, and chimney mounts : guy wire; channel-transfer switches; couplers; interference filters. Fourteen models.
Radelco Mfg. Co.
7580 Garfield Blvd
Clereland 25, Ohio
"Bar-X" all-channel, v.h.f. antennas, six models: hi-low allchannel, v.h.f. antennas, six models; in-line, all-channel, v.h.f. antennas, three models all-channel u.h.f., one model ;
indoor antenna, one model ; sin-gle-channel Yagis; masts, wall and chimney mounts, ground rods, lightning arresters, other accessories.

The Radiart Cord

3455 Vega Ave., Cleveland 13, Ohio Broad-band and cut-to-channel antennas in all popular types. Thirty-eight models for v.h.f. U.h.f. models to be released soon. Indoor antennas, stacking kits, chimney mounts, lightning arresters.

Kadio Corporation of America

415 S. 5th Street. Harrison, N. J.
Twelve-channel TV antennas, folded dipoles with reflectors, V attachments, reversible-beam arrays. Arresters, mounting brackets, guy rings, other accessories.
Radio Merchandise Sales, Inc.
2016 Bronxdale Ave.
Bronx, N. Y.
Five-, 8-, and 10 -element arrays, conicals (quick-rig and preassembled), end-fire-V arrays and conical V 's; corner arrays. folded hi-low, straight hi-low, for v.h.f. and u.h.f.; window antennas, indoor antennas, masts, kits. Antenna switches, set couplers, chimney mounts, and all accessory hardware. Over twenty-six antenna models.
The Radion Corp
1130 W. Wisconsin Ave.
Chicaro, Ill.
Porcelain and phenolic lightning arresters; indoor TV antennas, V-type straight dipoles for v.h.f. and u.h.f.; printed circuit antennas for v.h.f. and u.h.f.; conical and folded dipole outdoor antennas; masts, mounts, and related accessories.

Ramsey Radio \& Television Co.
Box 297. Ramsey, Ill
Welded tubular-steel towers for roof or ground mounting, in 10 foot sections, five models; telescoping steel masts, two models.
Ray Co.
441 Summit St., Toledo, Ohio
Four-way, motorless, nondirectional; diamond stacked dipole array. Six models.

Kohn Mfg. Co.

2108-10 Main St., Peoria 5, Ill.
Self-supporting steel towerg, foldover towers and kits. drivein tower bases, tower accessories. Six models.

Walter L. Schott Co.

3225 Exposition Place
Los Angeles 18. Calif
Directional, conical, and doubleV wide-band arrays in various models; antenna kits; u.h.f. broad-band, corner-reflector, fan and double-V antennas. Fifteen models.
S/C Laboratories, Inc.
37 George St., Newark 5, N. J.
Six- and 8-element standard conicals; 6- and 8 -element deluxe conicals ; folded v.h.f. highband adapter; dual-V

Snyder Mfg. Co.

22nd and Ontario Sts.
Philadelphia 40, Pa
"Directronic" antennas, outdoor and indoor, for v.h.f. and u.h.f. : Yagis, biconicals; fringe-area high-gain "Directronics": u.h.f. corner-reflector, Yagi, and bowie types: end-fire V's: kits preassembled units: 300 -ohm flat and Tri-A transmission lines: masts; antenna-moun
sories. Thirty models.

South River Metal Products Co., Inc.

 377-379 Turnpike
South River, N.

Mounting brackets, chimney mounts, wall brackets, snap-in
mounts, vent-pipe mounts, ad justable wall brackets, peak and flat-roof mounts, eave mounts, guy rings and clamps, banding. banding replacement kits ground rods, screw-type insula tors, standofls, mast tubing.

Spirling Products Co.. Inc.

62 Grand St., New York 13, N. Y.
Tabet Mfg. Co., Inc
254 W. Tazewell St
254 W. Tazewe
Norfolk 10, Va.
Sectional aluminum towers
Three models (Economy, 24 feet Standard, 30 feet; Reinforced 90 feet maximum height). Towe sections and equipment.

Technical Appliance Corp

1 Taco St.
Sherburne, N. Y.
Broad-band, all-channel antennas, conical and high-low types for v.h.f. ; u.h.f.-v.h.f. fan and reflector types; twin-driven 5 element and 10 -element Yagis; indoor, simple-dipole and foldeddipole antennas. Seventy-three models. Accessories. mast mounts, lightning arresters, antenna amplifiers. Master anten-na-distribution systems

Tel-A-Ray Enterprises, Inc.

Box 332. Henderson. Ky.
U.h.f.-v.h.f. 3-, 5-, and 8-element Yagis. Broad-band butterfly antennas, window, attic, and 1-2-, and 4-bay arrays. Broad-band u.h.f. antennas. Fifty-six models. Steel towers
Television Laboratories, Inc
5045 W. Lake St., Chicago 44, 111 . Printed-circuit antennas, built in u.h.f. and $v . h . f$. antennas, un der-rug antennas. Eleven models

Television Radio Electronics

Route No. 1, Box 291
Merced, Calif.
V:h.f. 10-element in-line Yagi u.h.f. b-element Yagi with screen or reflector: corner-reflector u.h.f. bow-tie antennas; 5 -element cut-to-channel v.h.f. an tennas.

Telrex, Inc

Asbury Park, N. J.
V.h.f. conical-V-beams. Yag is window antennas, indoor "Bat Wings" : u.h.f. conical-V-beams, duplex Yagis, double-V-beams. corner reflectors : masts and ac cessories. Sixty models.

Tempo TV Products

2450 Ramona Blvd.
Los Angeles 33, Calif.
Fourteen sizes of steel telescopic masts, from 20 to 80 feet.

Tennalab

Quincy, III
V.h.f. multichannel Yagis; v.h.f and u.h.f. single-channel Yagis v.h.f. all-channel array. Forty nine models.

Tenna-Trailer Co

321 N. Plum St., Pontiac, Ill.
Portable two-wheeled unit with telescoping 50 -foot mast for demonstrating $T V$ in fringe areas. Lightweight 50 -foot mast for permanent installations. Three models.
Thomas Mold \& Die Co.
Box 126. Wooster, Ohio
Hydraulic-telesconing, 40-, 60-$80-$, and 100 -foot steel or alumi num masts. Masts to 200 feet and mobile units to specifications.

Tricraft Products Co.
 1535 N. Ashland Ave.

Chicago 22, 111.
Loaded dipoles, hi-low folded dipole and reflector, single and stacked conical types, cut-tochannel Yagi, all-wave Yagi, electrically loaded and coveredspiral indoor types, window an-
tennas, u.h.f. antennas, masts ; kits and preassembled units Twenty-nine models.

'rio Mfg. Co.

Griggsville, Ill.
Wide-band high-gain Zig-Zag antennas for all v.h.f. channels. Eirht models.

TV Development Corp.

2024 McDonald Ave
All-band conicals, V 's, folded and straight dipoles with reflectors, indoor antennas, and masts. Six models.

T-V Pröducts Co

152 Sandford St.
Brooklyn 5, N. Y.
Wide- and narrow-band arrays, 5- and 10 -element Yagis, single and twin-driven-, preassembledand plug-in type conicals, hi-low folded and straight dipoles, inline antennas, V-type end-fire arrays, u.h.f. broad-band and single-channel types. Chimney, wall, and peak roof mounts, mast-joiners, antenna hardware. 132 models.

Unimac Division

Marvin Radio-Television

8906 Buckeye Rd.
Cleveland, Ohio
Chimney mounts. 6-, 12- and 18 inch wall mounts.

Universal Products

4100 Taylor Ave,, Racine, Wis Conical antenna, one model ; roof mounts. four models; steel towers, three models: masts, four models.

Video Electronic Laboratory

304 Ridgers Road

Des Moines Iow

Broad-band antennas: 90° corner reflectors, and V-type dipole and reflectors for v.h.f. band. U.h.f. corner reflectors and horizontally polarized helicals. Ten models.
Walnut Machine Co., Inc
152: S. Walnut St.
South Bend 14, Ind
Alaminum all-channel v.h.f. antenna. One model.
Ward Products Corp.
Div. of the Gabriel Co

1523 E. 45th St.
Cleveland 3. Ohio
Combination u.h.f.-v.h.f. antennas. folded dipoles, in-lines, conicals. Yagis, in kit form and as preassembled units. Twenty-five models.

Wells \& Winegard

1511 Mt. Pleasant St.
Burlington. Iowa
Wide- and narrow-band arrays. combination-channel Yagis, and high-gain all-channel primaryand fringe-area arrays. Six models.

Western Coil \& Electrical Co
215 State St., Kacine, Wis.
TV towers. puyed-triangular-

TV comes

Record installation speed gives "City of Roses" first commercial u.h.f. station

By VICTOR BARY*

THE FCC's announcement last April of the v.h.f.-u.h.f. allocations plan for new television stations ended the work of various experimental u.h.f. television stations throughout the country.

One of these, RCA-NBC station KC2XAK in Stratford (near Bridgeport), Connecticut (RADIO-Electronics, August, 1950), played a major part in speeding up the "thaw" by broadcasting continuously for two years and eight months according to strict commercial standards, and by making its facilities and test data available to the entire TV industry and to the public. During the 32 months of its career, KC2XAK broadcast u.h.f. TV programs 14 hours a day, 5 days a week, and served as the experimental guinea pig for the TV industry.

Aside from its routine program operations this pioneer station furnished answers to vital problems of tube and component performance at u.h.f., circuit stability data, and transmittingantenna design information. It also helped TV-receiver manufacturers design and field-test u.h.f. receivers, antennas, and converters, and aided testequipment manufacturers in designing and testing frequency- and modulationmonitoring equipment for future commercial service. The final sign-off took place on August 23. Bill McAlister and myself, who had started with KC2XAK as the two-man operational staff and had lived with it through its more than two-and-a-half years' existence, were assigned to go along with the station and get it going again in its new home.

Just 26 days later, on September 18, 1952, the KC2XAK transmitter came on the air again as a television station in Portland, Oregon. Under new call letters, it then became the world's first commercial u.h.f. TV station two days afterward when it signed on the air officially as KPTV, channel 27, ending the television famine for a city of over half a million people. In transmitting a test pattern exactly 10 days after the first piece of electronic equipment was moved into the still-uncompleted transmitter building, KPTV not orly surprised the broadcast industry, but

[^8]
to PORTLAND

This survey crew checked KPTV's first broadcast. The corner-reflector antenna can be raised 70 feet above the street.
set off the frantic rush of receiver sales and installations which will keep Portland's radio and TV technicians redeyed and sleepless for many a month.

Operation on TV channel 27, 548-554 mc , instead of the original $529-535 \mathrm{mc}$ meant that a new antenna and filterplexer had to be built, the transmitter retuned, and a new control crystal ground. In a brief 26 days we tagged,
dismantled, and packed the complete transmitter and tower, anxiously followed their progress on the 3,000 -mile haul from the East to the West Coast, and reassembled it at its new location.

After the transmitter was retuned to the new frequency at Bridgeport, it was broken down into paired frames and racks; heavy or fragile components were removed, packed, and crated in-

dividually, and loaded immediately aboard a transcontinental motor van. The tower and antenna were disassembled, marked, and loaded aboard a fastfreight railroad car--the tower destined for Portland, and the antenna to be returned to RCA in Camden, New Jersey, as it was unsuitable for operation at the higher frequency. The transmitter reached Portland September 8, and the tower and new antenna arrived three days later.

We went to work immediately, keeping the same floor plan and general layout used in Bridgeport. In this way, we were able to use the original interconnecting cables, so that work proceeded rapidly: An Indian-head monoscope and synchronization generator were added to the original video equipment, along with additional amplifiers for the temporary studio. When the $60-\mathrm{kva}$ service line was finally brought in five days later we were able to fire up and deliver full power to the dummy load the same day.

Meanwhile, the tower had been erected, the $31 / 8$-inch transmission line installed, and the new transmitting antenna checked. KPTV's owner was kept informed., of our daily progress, and made immediate application for temporary authorization to broadcast. Work went on without interruption and in the next five days, a film camera chain was set up and checked, and a sound-isolated studio was constructed-complete with video- and audio-monitoring equipment and program lines. Construction work on the building itself was still going on, and we were forced to compete for work space with bricklayers, carpenters, plumbers, and electricians. The complex co-ordinated effort-including authorization from the FCC, and the Portland City Commission, and planning, manufacturing, and construction by RCA, NBC, and the Empire Coil Com-pany-culminated in the station's official sign-on on September 20. KPTV's ground-breaking ceremony in August had set off a flood of local rumors and speculation as to the opening day. Daily construction progress was reported in print and picture.

Needless to say, KPTV's early arrival

Right-Victor Bary checks KPTV's "filterplexer," which feeds sound and video signals to a single transmitting antenna. Above-KPTV's chief station engineer Russ Olsen (seated) and Bill McAlister of NBC.
surprised even the most optimistic prognosticator: Portland was able to see its first televised World Series.

A rapid, but extensive reception survey was undertaken by RCA as soon as the channel 27 test pattern hit the air, and the coverage proved immensely gratifying, with good clear pictures being received 25 to 30 miles away. Usable-picture reports also came from Salem (45 miles away) and other localities, with one report of good reception (the furthermost one at that time) at 90 miles distance.
Dominating the city from a height of over 1,000 feet, the 17-kilowatt effective radiated power developed from the basic 1 -kilowatt transmitter output by the RCA TFU-24 antenna, is beamed downward over a service area which is topographically a virtual plain, an ideal situation for good u.h.f. reception. Terrain and foliage-shadow problems, though minimized by the exceptional transmitting height, were nevertheless present and accounted for poor pictures in some areas. A rough estimate based on this early survey showed 10% of the locations checked were getting poor signals or none at all. Many of these locations, behind high hills, tall buildings, or shadowed by high trees, were able later to get acceptable pictures with highergain antennas, with elevated antennas, or by reorienting so that they worked from a strong reflection; and by using more sensitive u.h.f. converters. From the installer's viewpoint, each of these cases was a "special," as the time required to search for a signal, and substitute higher-efficiency components meant losing valuable time at a period when the technician could least afford it.

Performance reports on various makes of converters and antennas showed that good results were obtained with both built-in (turret-strip) and external converters; with dipole anten-

nas (single and stacked "bow-ties") ; as well as with Yagis, corner reflectors, parabolas, and vees. Performance of dual-purpose antennas could not be evaluated fairly as no v.h.f. signal was available but the dual's performance on u.h.f. did not always match the ones designed strictly for u.h.f. reception. Three days after KPTV's test signals appeared on the air, not a turnbuckle, stand-off insulator, spool of lead-in or guy wire or other equipment needed for antenna installation could be bought from local suppliers. Receivers and converters were arriving hourly by truck, railroad, and air freight. These were rushed immediately to hastily-set-up test points in warehouses, where they were checked over by crews working round-the-clock. The larger service organizations imported experienced crew chiefs to train and instruct local teams in the techniques of handling u.h.f. TV, and to assist independent service technicians in getting started.

Two days after the first test pattern transmission, KPTV signed on officially, with a program originating in the temporary studio in the transmitter building. The opening program included an address by Herbert Mayer, head of KPTV and the Empire Coil Co.; a documentary film on the history of u.h.f. TV; the NBC network's All-Star Review, and the Show of Shows. Later, the 1952 World Series played to standing-roomonly audiences in automobile showrooms, furniture stores, and appliance stores throughout town.

After a hectic three weeks I left KC2XAK-KPTV and Portland to return East. Bill McAlister stayed on to help put on the finishing touches, wrap up loose ends, and train a technical staff, as well as to help plan and construct KPTV's proposed studios in the heart of the city.

Television had come to Portland at last.

KINESCOPE
 REPLACEMENT

 CHARTBy E. W. SCOTT

This chart simplifies comparisons of the principal characteristics of most television picture tubes

Fig. 3

Tube type

10BP4
$10 \mathrm{EP4}$
10 FP 4
$10 \mathrm{MP4}$
$10 \mathrm{CP4}$ Bulb diameter
or diagonal
(inches)

Over-al
length
Ion trap type

10-inch glass round, 50 degrees

$101 / 2$	$175 / 3$	Double	1	Cavity
$101 / 2$	$175 / 8$	Double	1	Ball
$101 / 2$	$175 / 8$	Nonc	1	Cavity
$101 / 2$	$175 / 8$	Single	2	Cavily
$101 / 2$	$165 / 8$	None	1	Ball

1J-inch glass round, 50 degrees, clectrostatic focus

14BP4	$1311 / 16$	$1613 / 16$	Double	1	Cavity
$14 E P 4$	$1311 / 16$	$1613 / 16$	Double	1	Cavity
$14 C P 4$	$1311 / 16$	$163 / 4$	Single	1	Cavity
$14 D P 4$	$1311 / 16$	$163 / 4$	Double	1	Cavily

14-inch glass rectangular, 70 degrees, h.v. electrostatic focus

$1711 / 16$
Single
a, i

16-inch glass round, 60 degrees, self focus
16ACP4

Tube type	Bulb diameter or diagonal (inches)	Over-all length	Ion trap type	Base diagram Fig. No.	Anode connector	Notes
	17-inch glass rectangular. 70 degrees					
$178 P 4$ 17 AP4 17JP4 170P4 17UP4 17YP4	$163 / 4$ 16 3/4 $163 / 4$ $163 / 4$ $163 / 4$ $163 / 4$	$\begin{aligned} & 195 / 8 \\ & 185 / 8 \\ & 199 / 16 \\ & 199 / 16 \\ & 199 / 16 \\ & 199 / 16 \end{aligned}$	Single Single Single Single Single Single	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Cavity Cavity Cavity Cavity Cavity Cavity	$\begin{aligned} & m \\ & \mathbf{m} \\ & m \end{aligned}$
	17 -inch glass rectangular. 70 degrees, electrastatic focus					
17 FP4 17HP4 17LP4 17RP4 17VP4 17KP4 17SP4	$\begin{aligned} & 163 / 4 \\ & 1633 / 4 \\ & 163 / 4 \\ & 163 / 4 \\ & 163 / 4 \\ & 163 / 4 \\ & 165 / 8 \end{aligned}$	$\begin{aligned} & 195 / 8 \\ & 199 / 16 \\ & 199 / 16 \\ & 193 / 4 \\ & 199 / 16 \\ & 195 / 8 \\ & 193 / 16 \end{aligned}$	Single Single Single Single Single Single Single	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 6 \\ & 6 \end{aligned}$	Cavity Cavity Cavity Cavity Cavity Cavity Cavity	
	17-inch mefal rectangular, 70 degrees					
17CP4	17	19	Single	1	Cone	a
	17-inch metal rectangular, 70 degrees electrostatic focus					
$\begin{aligned} & \text { 17GP4 } \\ & \text { 17TP4 } \end{aligned}$	$17.13 / 16$	$\begin{aligned} & 181 / 16 \\ & 195 / 16 \end{aligned}$	Single Single	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	Cone Cone	a, 0 0,5
	19-inch glass round, 66 degrees					
$19 F P 4$ 190P4 19GP4	$\begin{aligned} & 187 / 8 \\ & 187 / 8 \\ & 187 / 8 \end{aligned}$	$\begin{aligned} & 22 \\ & 211 / 2 \\ & 211 / 4 \end{aligned}$	Double Double Single	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Cavity Cavity Cavity	$\begin{aligned} & \text { a } \\ & \text { e } \end{aligned}$
	19-iach metal round, 66 degrees					
19AP4	$183 / 4$	22	Single	1	Cone	-
	19-inch glass rectangular, 70 degrees					
19JP4$19 E P 4$	$\begin{aligned} & 185 / 8 \\ & 171 / 8 \end{aligned}$	$\begin{aligned} & 213 / 16 \\ & 211 / 2 \end{aligned}$	Single Double	1	Cavity Cavity	0
	20-inch glass round, 54 degrees					
208P4	20 3/8	$283 / 4$	None	1	Cap	a
	20-inch glass rectangular. 70 degrees					
200 DP 4 20CP4	$\begin{aligned} & 203 / 32 \\ & 207 / 32 \end{aligned}$	$\begin{aligned} & 217 / 8 \\ & 2113 / 16 \end{aligned}$	Single Single	1	Cavity Cavity	a, n
	20-inch glass rectangular, 70 degrees, electrostatic focus					
$\begin{aligned} & \text { 20MP4 } \\ & 20 \mathrm{HP4} \\ & 20 \mathrm{LP4} \\ & 20 \mathrm{FP4} \\ & 20 \mathrm{GP4} \end{aligned}$	$\begin{aligned} & 209 / 32 \\ & 207 / 32 \\ & 207 / 32 \\ & 203 / 32 \\ & 203 / 32 \end{aligned}$	221/8 22 1/8 221/8 22 1/8 22 1/8	Single Single Single Single Single	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	Cavity Cavity Cavity Cavity Cavity	
	20-inch glass rectangular, 70 degrees, self-focus					
20JP4	20 7/32	$221 / 8$	Single	6	Cavity	
	21 inch metal rectangular. 70 degrees					
$210 P 4$ 21 GP4 21AP4 21 MP4	$\begin{aligned} & 225 / 8 \\ & 225 / 8 \\ & 203 / 4 \\ & 21 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 225 / 8 \\ & 225 / 8 \end{aligned}$	Single Single Single Single	5 6 1 5	Cone Cone Cone Cone	a, a_{1} a, a,
	21 -inch glass rectangular, 70 degrees					
21FP4 $21 K P 4$ 21EP4 21WP4 21WP4X	$\begin{aligned} & 2111 / 32 \\ & 2111 / 32 \\ & 2111 / 32 \\ & 205 / 8 \\ & 205 / 8 \end{aligned}$	$\begin{aligned} & 233 / 8 \\ & 23 \\ & 23 \\ & 23 / 8 \\ & 225 / 8 \\ & 221 / 8 \end{aligned}$	Single Single Single Single Single	$\begin{aligned} & 5 \\ & 6 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Cavity Cavity Cavity Cavity Cavity	
	22-inch metol round. 70 degrees					
22AP4	$2111 / 16$	$227 / 8$	Single	1	Cone	a
	24-inch metal round, 70 degrees					
24AP4	$241 / 8$	247/16	Single	1	Cone	-
	24-inch metal round, 70 degrees, l.v. electrostatic focus					
248P4	$241 / 8$	24 7/16	Single	5	Cone	-
	27-inch metal rectangular, 90 degrees					
27AP4	$267 / 8$	$217 / 8$	Single	1	Cone	
	27-inch glass rectangular, 90 degrees					
27EP4	27	23 3/32	Single	1	Covity	
		inch meto	round, 90	grees		
30BP4	$301 / 8$	23 9/16	Single	1	Cone	

The modern TV service technician has found that many of the big-screen picture tubes of a few years ago are either practically extinct or-like the 20 AP 4 -now cost several times as much as newer tube types of equal size or larger. Converting the set to use one of the new tube types is often the most practical and economical solution to the problem.
At this point, the technician has the problem of selecting the most suitable replacement tube. The logical solution is to select a tube which can be installed with the fewest possible changes in the circuit and the receiver cabinet. This tabulation of magnetic-deflection tubes has been prepared to help the technician select the logical tube for any conversion or replacement.

Tubes are listed accordirg to size, shape, diagonal deflection angle, and method of focusing. Types with angles of 50 to 60 degrees can usually be interchanged without modifying the receiver circuits. The flyback transformer and yoke should be replaced when the replacement tube is a round type with a 66- to 70-degree deflection angle or a rectangular type having a 70 -degree diagonal deflection angle.

Sweep and operating voltages to give adequate picture size and brightness with the new tube can be obtained by selecting suitable horizontal-output and deflection components, and applying conversion techniques described in the many conversion articles which have been published in Radio-Electronics. A complete tabulation of yokes, hori-zontal-output and flyback transformers, and other conversion components is included on page 66 of this issue.

Note: Recently-made RCA 10BP4, 12LP4, and 16AP4 tubes have a new type gun. Although they operate satisfactorily with double-field beam-benders used with earlier types they are designed to work with single field beam-bender. If trouble develops, substitute a singlefield PM type ion-trap magnet designed for the 16 GP 4 .

FOOTNOTES

a-Tube has no exterior conductive coating. Add $500-\mu \mu \mathrm{f}$, high-valtage filter capacitor when using tube as replacement for type having exterior coating. When this type is replaced by tube hoving outside coating, ground the cooting to the chassis. b-Triode type tube; has no No. 2 arid. For circuitry. refer to diagrams of sets using triode and tetrode types. Alter receiver circuits where necessary to suit c-This tube has 2.5 -volt, 2.1 amp heater: all others have 6.3 -volt, $600-\mathrm{ma}$ heaters.
d-Faceplate curvature has 20 -inch radius; all others in this group have 40 -inch radius.
e-Requires JETEC-RTMA type 106 focus coil; others in this group use type 109 focus coil.
4.Faceplate curvature has 56 -inch radius; others in this group have 27 -inch radius.
g-Deflection angle is 50 degrees. The deflection angle for other tubes in this group is 60 degrees. h-Radius of faceplate curvature is 56 inches. i-Radius of faceplate curvature is 40 inches; all others in this group have 27 -inch radius.
i-17BP4-A and B have outside conductive coatings: 17BP4 has not.
k-Identical to 15DP4 except it has gray faceplate and cavity type anode contact.
n-Tube with suffix " A " has external conductive coating.
P-Identical to I2QP4 except that anode contact is recessed-cavity type.
a-Experimental type-first run.
\mathbf{r} - Tube has low voltage electrostatic focus electrode. s-Tube has high-voltage electrostatic focus elec. trode.
t-Self-focus tube.
END

TELEVISION COMPONENTS

THE SUCCESS of any TV conversion or repair job in terms of customer satisfaction depends on high-quality materials and highgrade workmanship. From the technician's viewpoint, there's also the question of profit. The technician has the ability and equipment to do the job profitably, so he needs only to supply high-quality, long-lasting components to win and hold a satisfied customer. This tabulation will enable him to select the desired components for any job quickly and accurately.

Before beginning any service job that requires the replacement of the horizontal output transformer or deflection yoke, it is advisable-whenever possible-to check the tubes and all operating voltages to insure that the balance of the set is working with maximum efficiency. Do not operate a television receiver with the deflection yoke disconnected or the plate cap removed from the horizontal output tube. The first is likely to cause damage to the focus control potentiometer and the latter will quickly damage the output tube.
After installing the new components, carefully readjust the horizontal frequency and drive controls and the setting of the ion trap in accord with the set manufacturers' service instructions. Failure to do this may result in abnormal or subnormal sweep, high and boosted B plus voltages, and a damaged picture tube.

When yoke and output transformer are to be replaced, manufacturers' matched sets are desirable whenever possible. When using unmatched units, try connecting the width coil and deflection yoke across the various taps on the secondary of the transformer to determine which gives the best performance.

Corona and arc-over often occur after a new high-voltage transformer has been installed. Higher operating voltages, changes in lead dress, grimeencrusted insulation materials, and poor placement of parts often combine to cause these troubles.

Corona which occurs from a highvcitage point close to the chassis, highvoltage cage, or other grounded body will often cause a shiny spot to appear on the grounded body directly opposite the spot where corona occurs. A pitted or burned spot will be seen at the point of an arc. These troubles can be eliminated by rounding off all sharp edges and by increasing separation between ground and the high-voltage component. One quick method of eliminating these troubles is to coat the highvoltage point with anti-corona dope or lacquer and use a large ball-peen hammer to make a concave dimple in the cage cover directly opposite the point where the corona or arc occurred.
 LINEARTY COHS

Mfr. and Type No.	RCA-G-E Equiv.	Inductance (mh)	Mif. and Type No.	$\left\|\begin{array}{c} \text { RCA-G-E } \\ \text { Equiv. } \end{array}\right\|$	Inductance (mh)
DU MONT L1A1			RCA 201R3 RCA 201R5		$\begin{gathered} \mathbf{5 . 5 - 2 0 . 0} \\ 0.55-2.3 \end{gathered}$
G-E RLD-016			RCA 207R1		1.3-4.3
MERIT MWC-1		0.3-27	RCA 213R1		1.5-8.3
MERIT MWC-2 MERIT MWC-3		$\begin{gathered} 0.1-4.0 \\ 20-60 \end{gathered}$	STAN S-958 STAN S. 980	$\begin{aligned} & 201 \mathrm{R} 3 \\ & 77 \mathrm{~J} 4 \end{aligned}$	
RAM 201R3 RAM 201R5 ${ }^{22}$ RAM 201R10		$\begin{gathered} 5.0-20.0 \\ 0.55-2.0 \\ 0.5-29.5 \end{gathered}$	$\begin{aligned} & \text { TECH 1R3 } \\ & \text { TECH 1R522 } \\ & \text { TECH 9R1 } \end{aligned}$	$\begin{aligned} & \text { 201R3 } \\ & \text { 201R5 } \\ & \text { 209R1 } \end{aligned}$	

FOR CONVERSION OR REPAIR

HORIZONTAL OUTPUT AND H.V. TRANSFORMERS (continued)

Mir, and Type No.	Max. kv	$\begin{aligned} & \text { Defl. } \\ & \text { Angle } \\ & \text { (deg.) } \\ & \hline \end{aligned}$	Core	Typical Output	H.V. Rect. Tubes	$\begin{gathered} \text { Mfr.'s } \\ \text { Matching } \\ \text { Yoke } \end{gathered}$	$\begin{gathered} \text { Equive } \\ \text { IG-E-RCA } \\ \text { Transiormer } \end{gathered}$
RAM $\times 0655^{29}$	14-15	70		6BQ6-GT		Y70F20	
	14 14	70				Y77F08	
${ }^{\text {RAM }}$ RAM \times O69 ${ }^{\text {a }}$	$\underset{\substack{11-13.5 \\ 16-17.5}}{ }$	70		${ }^{\text {6BG6-G }}$		${ }_{\text {Y77oFs } 30 / 3}$	
RAM X070	13	70	Ferrito	$S_{\text {ame as }} \mathrm{XO33}$		Y77FF 0	
RAM XO71 RAM X072	15 15	70 70	$\begin{aligned} & \text { Ferrite } \\ & \text { Ferrite } \end{aligned}$	6CD6-G 6B06-GT		(Y770F10	
RCA 211 TI	9	50-57	Pow. iro	6BG6-G	183-GT	201 D 12	
RCA $211{ }^{\text {T }} 3$	8.75	50-57	Pow, iron	6BG6-G	183-GT	${ }_{2010}^{207 D 12}$	
RCA 223 T1	14	70	Ferrite	6AU5-GT	183-GT	209 Di	
RCA 224T1	14	66-70	Ferrite	6BQ6-GT	183-GT	209 DI	
RCA 225 TI	16	66-70	Ferrite	6BQ6-GT	1B3.GT	$209 \mathrm{D1}$	
RCA 23071	18	66-70	Ferrito	${ }_{6}^{\text {6AU5GT }}$	183-GT	$\underset{21181}{21101}$	
RCA 231T1 ${ }^{13}$	15	50-70	Ferrite	All types	183-GT	${ }_{\text {All }}^{211 \mathrm{D} 2}$	
RCA 232T1, ${ }^{213}$	16	50-70	Ferrite	All types	$112,1 \times 2-A$ $1 \times 2, A, 1 V 2$,		
ROOT SRJ	14	70	Ferrite	6BG6-G	183-GT		77 JI
				6BQ6-GT 6CD6-G	1×2		
ROOT SR-253	21	90		(2) $68 \mathrm{BQ} 6 . \mathrm{GT}$	(2) 1B3.GT		
STAN S-948		50-57	Pow. iron	6BG6-G	${ }^{183}$ B-GT		
STAN S-968	12 13.5	$\xrightarrow{50-57}$	Pow. $\begin{aligned} & \text { Pown } \\ & \text { Pow. iron }\end{aligned}$	${ }_{\text {6BG6-G }}^{686}$	${ }_{183}^{183}{ }^{183}$		${ }_{21}^{21173}$
STAN S-988	14.3	-	Powi iron	${ }_{6866-G}$			211T5
STAN S-999	14.5	70	Ferrite	6BQ6-GT			7711
STAND A-8119	13	53	Pow. iron	6BG6.G	(2) IB3-GT		21175
STAND A-8127	10	${ }_{53}^{53}$	Pow iron	${ }_{68 G 6-6}^{686}$	${ }_{183}^{183-6 T}$	DY-1	21173
STAND A-8129	13	70	Fown iron	${ }_{\text {che }}^{68666-6}$	${ }_{183} 183 \mathrm{GT}$	${ }_{\text {DY- }}$	
STAND A-8130	${ }_{13}^{13}$	70	$\underset{\substack{\text { Ferrite } \\ \text { Air }}}{ }$	6B66.G	183-GT		
STAND A-813317	12.5-15	70	${ }_{\text {Ferrite }}$				74951
TECH 15 T1	10 135	53 60	Ferrite	6BG6-G	183-GT		21571
TECA 2351	13.5	${ }_{70} 6$					${ }_{\substack{21175 \\ 213}}$
TECH 7 J	15	70	Ferrite	Most types	1×2-A		
TODD CS21	15	50-70	Fearite				
${ }^{\text {TODD }}$ TODS CS24-AGC	15	70	Ferrito				
TODD CS21-AGC	${ }_{16}^{16}$	${ }^{70}$	Ferrite				
TODD CS-U32	${ }_{23}^{10-14}$	- 50	Ferrite Ferrit				
TRIAD D-1	14	70	Ferrite				7711
TRIAD D-2	14	70	Ferrite	${ }_{68 \mathrm{BG} 6 \mathrm{G}}^{6806 . \mathrm{GT}}$	183-GT		
TRIAD D-11	10	70	Iron	6BG6.		Y-11	
TRIAD D-14	14	70	Forrite	${ }_{6 B 66.6}^{686}$	183-GT	Y-12	77JI
TRIAD D.15 ${ }^{1}$	14	70	Ferrite		1B3-GT	Y $\begin{gathered}\mathrm{Y}-17 \\ \mathbf{Y}-12\end{gathered}$	
TRIAD D-196	16	70	Forrite	- ${ }_{\text {6B06-GT }}^{\text {AUS-GT }}$	1B3-GT	P-17	22571
TRIAD DA-20	14	70	Air	6nQ8-GT AUS.GT	1B3-GT	($\begin{gathered}\text { Y-1 } \\ \mathbf{Y}-20\end{gathered}$	74951
				68 Q 6 -GT			

Wha bofe			
Mfr. and Type No.	No. Matching Horiz. Output Transformer		Inductance (mh)
DUMONT W1A1 ${ }^{39}$	HIAI		
G-E RLD-019	RT0-085		
MERIT MWC-1 ${ }^{14 .}$ MERIT MWC-2 MERIT MWC-3	$\begin{aligned} & \text { HVO-6, }-7 \\ & \text { HVO-8, }-9 \\ & \text { HVO-5, }-9 \\ & \text { HVO-8, }-9 \end{aligned}$		
RAM 201R1 RAM 201R4 RAM 201 R10. RAM 201R1139	$\begin{aligned} & \mathrm{X032} \\ & \mathrm{X035} \\ & \text { X045 } \\ & \text { X032, X035 } \\ & \text { X053 } \end{aligned}$		$\begin{aligned} & .05-0.25 \\ & 0.17-0.61 \\ & 3.5-29.5 \\ & \text { (Pri.) } \\ & 0.16-0.7 \\ & \text { (Sec.) } \\ & 3.2-9.0 \end{aligned}$
RCA 201R1 RCA 201R2 RCA 201R4 RCA 206RI RCA 211R1 RCA 212R1			$\begin{aligned} & .05-0.25 \\ & 85-240 \\ & 0.17-0.61 \\ & 0.47-1.7 \\ & 1.65-9.2 \\ & 2.9-16.0 \end{aligned}$
STAN S-957 STAN S-981 ${ }^{39}$ STAN S-984	$\begin{aligned} & \text { S-998 } \\ & \text { S-999 } \end{aligned}$.05-0.25
STAND WC-51	All Stancor		$\begin{array}{\|c} \text { 4.0-39 } \\ \text { A.g.c. } \\ \text { winding } \\ 2.7-7.6 \end{array}$
TECH 1R1 TECH 1R4 TECH 1R4-AG ${ }^{39}$ TECH 1R4-J TECH 1R4-E ${ }^{39}$	$\begin{aligned} & \text { 11T1, } 15 \mathrm{Tl} \\ & \text { 11T5 } \\ & \text { 11T1, } 11 \mathrm{~T} 5 \\ & \text { TJ1 } \\ & \text { TJ1 } \end{aligned}$		
HN Tinto			
Mir. and Type No.	Single or Double	PM or EM	Field Strength (gauss)
CLAR TV-2 CLAR TV-3	Sing'e Double	$\begin{aligned} & \mathrm{PM} \\ & \mathrm{PM} \end{aligned}$	
$\begin{aligned} & \text { G-E RET-003 } \\ & \text { G-E RET-005 } \end{aligned}$	Single Single	$\begin{aligned} & \mathrm{PM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 42 \\ & 35 \end{aligned}$
PERF IT135 PERF IT145-15	Single Double	$\begin{aligned} & \mathbf{P M} \\ & \mathbf{P M} \end{aligned}$	$\begin{gathered} 35 \\ 45^{35} \quad 15^{36} \end{gathered}$
QUAM 1T1 QUAM 1T2 QUAM 1T3	Double Double Single	$\begin{aligned} & \mathrm{PM} \\ & \mathrm{PM} \\ & \mathrm{PM} \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \\ & 42 \end{aligned}$
RCA 203D1 RCA 203D ${ }^{34}$	Double Double	$\begin{gathered} \text { EM } \end{gathered}$	$55^{35} 15^{36}$
$\begin{aligned} & \text { TECH L1T1 } \\ & \text { TECH L1T2 } \\ & \text { TECH L1T3 } \end{aligned}$	Single Double Double	PM PM PM	$\begin{gathered} 35-45 \\ 45 \end{gathered}$

TV.TUBE MASKS

Mfr. \& Type No.	Size Tube (inches)	Color	Material
CRON CK-14	$14^{\prime \prime}$ rect.	Gold	Glass
CRON CK-16	$16^{\prime \prime}$ rect.	Gold	Glass
CRON CK-17	$17^{\prime \prime}$ rect.	Gold	G!ass
CRON CK-20	20" rect.	Gold	Glass
CRON CK-21	$21^{\prime \prime}$ rect.	Gold	Glass
JFD BR63-14	$14^{\prime \prime}$ rect.		Plastic
JFD BR63-16	$16^{\prime \prime}$ rect.		Plastic
JFD BR63-17	$17^{\prime \prime}$ rect.		Plastic
JFD BR63-19	$19^{\prime \prime}$ rect.		Plastic
JFD BR63-20	$20^{\prime \prime}$ rect.		Plastic
JFD BR63-16R	$16^{\prime \prime}$ round		Plastic
JFD BR63-19R	19" round		Plastic
TELE 712W	$121 / 2^{\prime \prime}$ round	Gold	Lucite
TELE 714R	$14^{\prime \prime}$ rect.	Gold	Lucite
TELE 716R	$16^{\prime \prime}$ rect.	Gold	Lucite
TELE 716W	$16^{\prime \prime}$ round	Gold	Lucite
TELE 717R	$17^{\prime \prime}$ rect.	Gold	Lucite
TELE 719W	19" round	Gold	Lucite
TELE 720R	$20^{\prime \prime}$ rect.	Gold	Lucite
TELE 721R	$21^{\prime \prime}$ rect.	Gold	Lucite
TELE 724W	$24^{\prime \prime}$ round	Green	Lucite
TELE 227R	$27^{\prime \prime}$ rect.	Green	Lucite

Note: Croname mask and escutcheon assemblies listed above consist of a heavy green-sprayed aluminum mask, $1 / 4$-inch tempered safety glass and a gold-finished escutcheon.

Tele Plastics masks listed above mount from rear of the cabinet. Masks which mount from the front of the cabinet have sufGx "S." For example: 720W-S, and 727R-S.

MOUNTING SLEEVES

Mir. and Type No.	Tube Types
TECH PL-4	Long-neck $16^{\prime \prime}$ metal round
TECH PL-4S	Short-neck $16^{\prime \prime}$ metal round
TECH PL-17R	$17^{\prime \prime}$ meta! rectangular
TECH PL-19	$19^{\prime \prime}$ metal round

Note: Set consists of polyethylene sleeve, retainer ring, and rubber band. Insulated for more than 30,000 volts.

Footnotes for TV components tables:
. Has a.g.c. winding which can be left open if not
2. Tapped secondary to match yokes from 8 to 30 mh and provide up to 15 kv output (16 kv with 232 II). For type 630 circuits.
4. Damping resistors built-in. R.C network supplied.
5. Complete with built-in R.C netwotk.
6. Especially for 19 -inch round and 20 -inch rectangular tubes.
7. Designed for autotransformer type flyback transformer.
Has focus-coil mounting bracket
Cosine yoke.
Equivalent to 201DI
Same as 20|DI with different terminal cannections.
Same as 201DI with molded core.
Equivalent to 201DI.203D3, and 201DI2.
Aso used as horizontal linearity coil.
For 10 - or 12 -inch tubes.
controls.
Any 70 -degree voke.
Equivalent of 209D1. 206DI, and Y2A.
Same as 2llD except for damping networks Any voltages suitable for 10 - or 12 -inch tubes. Any voltages suitable for any 70 -degree tubes Tapped linearity coil.
23. Coil and terminal assembly oniv. Core pieces to be taken from transformer being replaced.
Admiral part number.
. Has separate a.g.c. or width-coil winding.
26. Has separate o.g.c. winding.

Similar to XO45, but operates on lower voltage.
. Autotranstormer.
Used in CBS sets.
Used in eaty Emerson sets.
32. Universal type.

DEFLECTION YOKES

Mif. \& Type No.	Deff. Angie (deg.)	Max. Tube Size (inches)	Induct. Horiz. Winding (mh)		Core
DUMONT Y2A15	70	Any	10.5	42.0	Ferrite
DUMONT Y2A?	70	Any	10.5	42.0	Ferrite
DUMONT Y2A3 ${ }^{7}$	70	Any	10.5	42.0	Ferrite
DUMONT Y2A5 ${ }^{7}$	70	Any	10.5	42.0	Ferrite
G-E RLD $02^{5} 8$	70	24	15.0	30.0	Ferrite
G-E RLD-025 ${ }^{5}$	70	24	15.0	30.0	Ferrite
HALL DF600	53	16	8.3	50.0	Iton
HALL DF601	70	24	8.5	50.0	Ferrite
HALL DF602	70	24	13.5	50.0	Ferrite
HALL DF603	70	24	30.0	3.5	Ferrite
HALL DF604	70	24	30.0	50.0	Ferrite
MERIT MD-12 ${ }^{13}$	53	16 round	8.3	50.0	
MERIT MD-13	53	16 round	30.0	50.0	
MERIT MDF-309 ${ }^{18}$	70	24	30.0	3.0	Ferrite
MERIT MDF-709 ${ }^{18}$	70	24	10.3	45.0	Ferrise
MERIT MidF-71 ${ }^{9}$	70	24	30.0	50.0	Ferrite
RAM Y701085	70	16	8.3	50.9	Iron wire
RAM Y70F085	70	17	8.3	50.0	
RAM Y70F10 ${ }^{5}$	70	24	10.3	50.0	Ferrite
RAM Y70F145	70	20	14.0	50.0	Ferrite
RAM Y70F175	70		17.0	50.0	Ferrite
RAM Y70F20 ${ }^{\circ}$	70		20.0	50.0	Ferrite
RAM Y70F30 ${ }^{5}$	70		30.0	50.0	Ferrite
RAM Y $70 F 3 \mathrm{~S} / 3^{5}$	70	24	30.0	3.3	Ferrite
RCA $201 \mathrm{DI} 2^{11}$	50-57	16	8.3	50.0	Iran wire
RCA 205D111	50-57	12	12.5	50.0	Molded iron
RCA 205D1	65-70	17	10.3	41.5	Ferite
RCA 207D112	50-57	16	8.1	55.0	Molded iron
RCA 209 Dl	66-70	17	13.3	41.0	ferrite
RCA 2111^{9}	$66-79$	21	13.3	41.0	Ferrite
RCA 211D249 ${ }^{19}$	66-70	21	13.3	41.0	Ferrite
STAND DY-11038	53		8.3	50.0	Molded iron
STAND DY-8938	70		8.5	50.0	Ferrite
STAND DY-9938	70		13.5	50.0	Ferrite
STAND DY-109 ${ }^{38}$	70		30.0	3.5	Ferrite
TECH 11D1	70	Any 70°	13.3	41.5	Ferrife
T0DD CF303	70	24	30.0	3.0	Ferrite
T0DD CF85	50-66	15	8.3	50.0	Ferrite
TODD CFI041	70	24	10.0	41.0	Ferrite
TODD CF1050	70	24	10.0	50.0	Ferite
TODD CF1156	90	30	11.0	56.0	Ferrite
TODD CF1441	70	24	14.0	41.0	Ferrite
TODD CF1450	70	24	14.0	50.0	Ferrite
TODD CF1850	70	24	18.0	500	Fersite
TODD CF2056	90	30	20.0	56.0	Ferrite
TODD CF3050	70	24	30.0	50.0	Ferrite
TRIAD Y-115	50	12	8.3	50.0	
TRIAD Y-1259	70	12	8.3	50.0	Ferrile
TRIAD Y-17 ${ }^{5}$	70	17	13.5	41.5	Ferrite
TRIAD Y-199	70	17	23.0	41.5	Ferrite
TRIAD Y-209	70	24	30.0	3.3	Ferrite

33. Composite 90 -degree deflection and high-voltage MERIT-Merit Transformer Corp., 4427 N. Clark St.
34. Comp

Supply. Universal ion trap. May be used as single field PERF--Perfection Electric Co., 2635 S . Wabash Ave. type by removing smail ring-shaped magnet.
Large magnet
For tubes up to 70 degrees.
Available with or without leads and networks. Has a.g.c. winding.

CODE
MANUFACTURER
CLAR-Clarostat Mig. Co., Inc., Dover, N. H.
CRON-Croname, Inc., 3701 Ravenswood Ave., Chi cago 13. 111.
DU MONT-Allen B. DU Mont Laboratories, Inc. Electronic Parts Sales 35 Market St, East Pac. G-E-General Electric Co Receiver Parts Sales G-E-General Electric Co., Receiver Parts Sales TELE-W York. N. Y. Co Division of Willmar Mfg HALL-The Halldorson Co., 4500 Ravenswood Ave. To., 202 Broadway, Brooklyn II, N. Y.
JFD-JFD Mfg. Co. Inc. 6101-6123 l6th Ave., Brook. TRIAD-Triad Transformer Mig. Co., 4055 Redwood JFD_JFD $\mathrm{Mfg}_{\text {Inn }} 4 \mathrm{~N} . \mathrm{Y}_{\mathrm{Y}}$. 0.1 Inc., 6101-6123 16th Ave., Brook. TRIAD—Triad Transformer Mig. Co., 4055 Redwood

MANY queries regarding the features and insta'lation factors of the Standard cascode tuner have been received by the Clinic. When old tuners are replaced with the cascode type a $2-1$ improvement in gain can be realized. Besides this, there is a reduction of 35 to 50% in noise (snow effect) over a pentode tuner. These advantages are due to the cascode principle, plus use of the 6BQ7, 6 BK 7 , or the newer $6 \mathrm{BZ7}$ tubes. (A detailed discussion of the cascode type front end is given in RadioElectronics, April, 1952, page 46.)

The cascode tuner made by the Standard Coil Products Co. is model TV-2000, 2300 series and is designed to replace most of the older tuners of conventional size. The Standard tuner is $411 / 32$ inches deep and $31 / 4$ inches wide. Another model, the TV-2032, is electrically identical to the TV-2000 except that both the fine tuning and station selector shafts are extra long so that they may be cut as desired.
The tuner is for use with intercarrier or other receivers where sound take-off is not within the tuner circuit (at mixer output). For receivers requiring a 21.25 -me sound take-off coil, part No. XM-752 must be used, as shown in Fig. 1. This coil can be mounted on the chassis near the tuner. The capacitor designated C_{r} is not supplied with the tuner or coil and should be approximately 2 to $4 \mu \mu \mathrm{f}$. If greater audio output is required, the circuit shown in Fig. 2 can be used.
The output intermediate frequency is set at $22.3-\mathrm{mc}$ at the factory, but the output is adjustable between 19 and 26 megacycles to suit the particular i.f. input system of the receiver. A screw set at an angle on top of coil L9 permits changing the output frequency within the range provided. The tuner tracking is preset at the factory and no other adjustments are normally necessary. If required, the oscillator coils can be adjusted individually for the different channels by centering the fine tuning control and using a noninductive screwdriver through the * Author: Mandl's Television Servicing.

Appearance of screen when cosine yoke is used without the corrector magnets.
hole adjacent to the selector shaft.
In fringe areas best results are obtained by using the maximum plate voltage of 250 . An a.g.c. (or manually controlled) bias of -0.8 to -1.1 volts applied to the white a.g.c. lead gives best sensitivity. The black lead goes to the 6.3 -volt a.c. source for the heater, while the red lead requires 135 volts plus and the blue 250 volts.
For u.h.f. reception, individual channel strips are available. These can replace any unused channel plug-in coils at the v.h.f. frequencies (channels 2 to 13). A separate u.h.f. strip must be used for every u.h.f. channel desired. Once the oscillator and antenna coil strips have been inserted, the selector shaft is rotated to the u.h.f. channel strip's operating position.
If the fine tuning doesn't produce the best picture at the mid-point of its range, the u.h.f. oscillator slug can be adjusted as previously mentioned for the v.h.f. stations. The u.h.f. strips contain an r.f. preselector, a crystal mixer, and a crystal harmonic generator to convert the ultra-high frequency carrier to the receiver i.f.

Conversion to 21 inches

I would like to convert a 630 type receiver to a 21-inch tube. The receiver already uses a $16 \mathrm{HP}_{4}$ tube with a highvoltage doubling system. What wiring changes and tube types do you recommend? W. H., Astoria, L. I.
The 16 HP 4 has a 60 -degree deflection angle. This means the present horizontal output transformer and yoke will not give satisfactory results for the 21-inch tubes, which have 70 degrees of deflection. Thus, a wide-angle transformer and yoke are necessary.
You could use a 21 EP4A, which is a rectangular tube with a cavity highvoltage contact, single-magnet ion trap, and a 70 -degree deflection angle. This is the curved-face tube which minimizes room glare. If a cosine yoke (widefocus) is used, corrector magnets will have to be installed (see a discussion of this in the June, 1952, issue of RadioElectronics, Television Service Clinic). Without the corrector magnets, pin-

Fig. 1-How a sound take-off and trap can be installed in the cascode tuner.

Fig. 2-Circuit for more sound output.
cushioning and nonlinearity will be difficult to co:rect. The photograph shows a test pattern on a 21EP4A tube without the use of corrector magnets. Despite the best adjustments of linearity controls, the inner circle shows defects in linearity.

A self-focus tube such as the 21 KP 4 A tube can also be used. The existing focus-coil assembly must be removed from the tube neck because focus is correct when the ion trap is placed at maximum brilliancy. The focus coil can be replaced with a resistor of the same d.c. resistance value.

16GP4 to 17BP4

What electrical changes would be necessary to change a receiver's 16 GP $_{4}$ to a 16RP4 or a 17BP4? E. C., New Orleans, La.

As the 16 GP 4 is a 70 -degree deflection tube, no changes should be necessary. If a 16RP4 is used, a doublemagnet ion trap is necessary and the high voltage must be applied to the cavity contact receptacle of the glass tube. The 17BP4A has an external conductive coating and the 17 BP 4 does not. Both tubes use a single-magnet ion trap and a cavity-type high-voltage contact.

END

Manufacturer	Model	Band selection	Channel tuning	Tube(s)	Circuit	Installation	Other features
Alliance Manufacturing Co. Lake Park Blvd., Alliance, Ohio	Tena-Scope AB Cascamatic BB	Sep. amps switching Automatic wide-band	Slug	2-6J6	T.p.t.g.	St.	Auto.
			Slug	$\begin{aligned} & 2-6 \mathrm{~J} 6 \\ & 1-6 \mathrm{BK} 7 \mathrm{~A} \end{aligned}$	Cascode	St.	Auto.
Anchor Radio Corporation 2215 So. St. Louis Ave. Chicago 23, Ill.	ARC-101-75	All-channel switching All-channel switching	Slug	1-6AK5	T.p.t.g.	St.	Gain control
	ARC-101-100		Slug	2-6AK5	2-stage	St.	Gain control
Approved Electronic Inst. Corp. 928 Broadway, New York 10, N. Y.	A-TVB A-UHF	Chan. 12-13 U.h.f. V.h.f.	Untuned Untuned	$\begin{aligned} & 2-6 \mathrm{~J} 6 \\ & 2-6 \mathrm{AF} 4 \end{aligned}$	2-stage 2-stage	St.	A.c. operation
	B-VHF		Untumed	$2-6 \mathrm{AF} 4$	-stage	St.	A.c. operation
The Astatic Corporation Conneaut, Ohio	CT-1	Tuned ekts. switching	Slug	$\begin{aligned} & 1-61307 \\ & 1-6.56 \end{aligned}$	2-stage neut. p.p.	St.	Auto. by-pass switch, 7 t-ar 300 -ohm input and output
Blonder-Tongue Labs. Inc. 526-536 North Ave. Westfield, N. J.	HA- 2 Antensifier HA-9 B- T Booster CA- 1 Commereial Antensifier CS1-(channel No.) Channel Strip Amplifier	All-channel wide-band All-channel wide-band All-channel wide-band Single channel	Untuned	$\begin{aligned} & 3-6.166 \\ & 1-12 A V 7 \end{aligned}$	4-stage cascaded	St.	Auto. 2!dhgan liy-pass switch
			Untuned	3-6.56	9 -stage	St.	Auto. 16 db gain
			Untuned	2-6.J6	cascaded 4 -stage	St.	28 (l) gain
				2-61367	cascaded		contron On-
			Pactory preset	$\begin{aligned} & 1-6 \mathrm{AB} 4 \\ & 1-6 \mathrm{CB} 6 \end{aligned}$	2-stane cascaded	St. or Ant.	Pluga into 13-T mixer-amplifier
David Bogen Co., Inc. 29 Ninth Ave. New York 14, N. Y.	BB1-A. BH1-13	Sep. amps switching Wide-band Wide-band	Slug	2-6.56	T.p.t.g.	St.	Auto.
	1313-1			4-6.J6	S-t.4-stage	St.	Auto.
	AMB-1			4-6J6	S-t.4-stage	Ant.	Control at set
Brach Manufacturing Corp. 200 Central Ave., Newark, N. J.	50825	Sep. amps wide-band Sep. amps wide-band	Slug aljust. Untuned	$\begin{aligned} & 1-6 \mathrm{AK5} \\ & 1-6 \mathrm{Cb} 6 \\ & 3-6.56 \\ & 1-12 \mathrm{~A} \mathrm{U7} \end{aligned}$	T.p.t.g.	St.	
	01630				Cascude	St.	
	-1\%				p.p.		
Electro-Voice, Inc. Buchanan, Mich.	3000	sep. amps wide-band	Untuned	4-6.16	2-stage broad-band	St.	Alto. 1 - or Q-ant. input
	3002	Sep. amps wide-band Sep. amps wide-band	Untuned Untuned	$\begin{aligned} & 2-613 K 7 \\ & 4-6 J 6 \end{aligned}$	1-stage wide-band -stage broad-hand	St.	Auto.
	3010					Ant.	Auto. 1 -or s-ant. input
	3012	Sep. amps wide-band	Untuned	$2-6 \mathrm{BK} 7$	1-stage wide-band	Ant.	Auto. 1 - or Q-int. input
I.D.E.A. Inc. 7900 Pendleton Pike Indianapolis 26, Ind.	Regency D13-5z0	All-channel switching	Stug	1-6.J6	T.p.t.g.	St.	Pwr. outlet for revr.
Industrial Television, Inc. 369 Lexington Ave. Clifton, N. J.	1T-102A	All-channel broad-band	lintuned	$2-613 \mathrm{~K} 7$	4-stage	Rear	18 db gain Auto.
	IT-9AAB	All-channel sep. amps	Untuned	$\begin{aligned} & 1-6 A K 5 \\ & 1-6 \mathrm{CB6} \\ & 2-6 \mathrm{BQ7} \\ & 1-6 \mathrm{X} 4 \end{aligned}$	3-stage cascode	Rear	Auto., sep. gain control for each band
	IT-96AB	Single channel	Fixed	1-6J6	2-stage	Rear	Auto.

Manufacturer	Model	Band selection	Channel tuming	Tube(s)	Circuit	Installation	Other features:
JF D Manufacturing Co. 6101-23 Sixteenth Ave. Brooklyn 4, N. Y.	VB (chan. No.) ${ }^{1}$	Single channel	Factory	1-6.56	T.p.t.g.	Rear	
	SW (chan. No.)	Single channel	Factory	1-6J6	T.p.t.g.	Rear	Bypass switch
	ECA	All-channel broad-band	Untuned	$2-6 \mathrm{BQ} 7$	2-stage	Rear	4 outputs
The La Pointe-Plascomold Corp. Rockville, Conn.	Vee-D-X Outboard	Single channel	Slug Adjust:	1-6J6	T.p.t.g.	Rear	Auto.
	Vee-D-X Rocket	Single channel	Sug Adjust.	1-6J6	T.p.t.g.	Ant.	Auto.
Mark Simpson Mfg. Co., Inc. 32-28 49th St., Long Island City 3, N. Y.	Sky Chief	All-channel switching	Slug	2-6.16	Tp.t.g.	St.	
	Super Sky Chief	All-channel switching	Slug	4-6J6	T.p.t.g.	St.	2 separately tuned sections
National Co., Inc. 61 Sherman St., Malden, Mass.	TVB-2BX	All-channel turret	Capacitor	1-6AK5	T.p.t.g.	St.	Seprate ofitput tuning control
The Radiart Corporation 3455 Vega Ave., Cleveland 13, Ohio	TV13-1	All-channel switching	Slug	1-6J6	T.p.t.g.	St.	
Radio Merchandise Sales, Inc. 2016 Bronxdale Ave. New York 60, N. Y.	SP-6	All-channel switching	Slug	1-6.AK5	T.p.t.g.		Gain control
	SP-6J	All-chamnel switching	Slug	1-6J6	T.p.t.g. (neut.)	St.	
Regency-See I.D.E.A.							
Sutton Electric Co. 426 West Short St. Lexington, Ky.	183	All-channel	Slug	1-6J6	T.p.t.g.	St.	
	5A	Single channel	Fixed	1-6.56	Tp.t.g.	Ant.	Auto., sep.
	SEC	Boosterconverter	Sug	$\begin{aligned} & 1-6 \mathrm{AF} 4 \\ & 1-6 \mathrm{~J} 6 \end{aligned}$	T.p.t.g.	St.	power lead All v.lif. and u h.f. channels
Tech-Master Products Company, 443-445 Broadway, N. Y. 13, N. Y.	TVB	All-channel switching	Capacitor	$1-6.4 \mathrm{~K} 5$	Tuncd plate	St.	Lit form
Technical Appliance Co. Sherburne, N. Y.	Taco 1688	Single channel	Pactory pre.et	1-6AK5	T.p.t.g.	Ant.	Auto.
The Turner Company Cedar Rapids, Iowa	TV-2	Continuous $54-216 \mathrm{mc}$	Inductuner	$1-12 \mathrm{dT} 7$	Ciscode	St.	Auto.
Videon Electronic Corp. 222 East Ohio St. Indianapolis 4, Ind.	$\begin{aligned} & 13-182 \\ & 13-133 \end{aligned}$	All-channel switching	Slug	1-6.J6	T.p.t.g.	St.	A.c. ontlet for TV
	13-298	All-channel switching	Slug	1-6.J6	T.p.t.g.	St.	

TERMS AND ABBREVIATIONS

Wide-band-uperating over one or both v.h.f. bands without tuning.
Switching-Using separate amplifiers for each band. All-channel-Refers to v.h.f. channels only; a booster which tunes channels 2-13.
T.p.t.g.-Tuned-plate tuned-grid.

JANUARY, 1953

S-t 4-stage-Stagger-tuned 4-stage amplifier.
S.t 4-stage-Stagger-funed 4 -stage amplifier.
St.-Standard mounting. (In separate cabinet) Rear-Mounted at rear of set. Does not need tuning for each station.
Ant.-Antenna mounting.
Auto-Turns on and off automatically with the

	욱ㅇํㅇ％		OVỠ		2	こきミこ		8	
					$$		טUUUणU ジぎぎぎぎき ー日时	0	
	$\infty \infty \infty \text { is }$	2－sso	ํㅗ룰	－¢ \％＝¢ \％＝	\cdots			\sim	
은응은은 은은은슨숭은은 			总总会 を	觡合需 －는ニニ 	$\stackrel{C}{\underline{D}}$		 	感	
	－ミロッシャス 		$\begin{aligned} & 19 \times 8 \\ & 208 \\ & 2082 \end{aligned}$	 	$\begin{aligned} & \text { is } \\ & 9 \end{aligned}$		 		
のnのめ＋＋＋＋＋＋＋－	のかのかの	＋＋＋＋	＋＋＋		－	＋＋－	＋t＋t＋	＋	
	밍믕흥흥밍	$\begin{aligned} & \text { 事密密 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 密戠密 } \end{gathered}$		突	密密灾家	事密氙氙密密	등	
		天웅여			－				
	戸うこのす	戸¢8\％	ららぁ		$\bar{\square}$	こか	880\％00\％\％	8	
	さささささ	永ささら	90\％	がっさかささささむ	\pm	ざざ気		\because	
			䓌き		\pm	らすこの気			
	808．8．8	\％08888	808：8		8			8	
			象家忽		$\begin{gathered} \infty \\ 60 \end{gathered}$		uzerax		
								\％	
					苞				

[^9]| sұлвшәу！ sว！uossวoวท | | | | $\overrightarrow{=} \overrightarrow{\hat{A}}$ | 2 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Eも | | | | 咅 | |
| | | | $0^{\circ}-0^{\infty}$ | 00000 | ＋ | 0000000000 |
| | $\frac{ㅁ ㅡ ㄹ ~}{n} \text { 을 }$ | | | | $\begin{aligned} & \text { B } \\ & 0 \\ & \text { 좁 } \end{aligned}$ | 은은은으으응읍으
 |
| （OW）d I \％ap！ | | | K2 20 | | $\begin{aligned} & 10 \\ & 5 \\ & 0 \\ & 010 \end{aligned}$ |
 |
| | $\pm+ \pm$ | sentiosesosos＋＋＋＋ | かのかったの | 于 $\ddagger+\infty 00$ | 0 | |
| （paspuras $\mathbf{~ л о ~}$
 | 끙 | | | | T | すDすD． |
| punos
 | $\stackrel{D}{D}$ | | | $\stackrel{y}{\infty} \stackrel{y}{\infty} \underset{\sim}{\infty} \stackrel{y}{\infty}$ | $\stackrel{8}{2}$ |
 |
| saquL Jo äquin | す大き | | 水可可可可 | －\％जन ज | \bigcirc | |
| AY apouy әqn $\mathbf{L} \mathbf{4 -}$ | $\propto \infty$ | | 品
 | \bullet－¢ む J | 0 | |
| （uI）azis 10
 | | | | | $\underset{y y y}{8}$ | |
| MS－INd－WV | | | 욱욱문운 | | | 운문운운 |
| səqumn sisseyb | 6488 | | | | O | |
| ${ }^{\text {Ppon }}$ | | | | | Telekit 19C－Universal | |
| ammorınus／ | | | | | | |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fada Radio \& Electric Co., Inc. 525 Main St., Belleville, N. J. \& ```
21C2
21T, 21TBM
24T2,24T2BM
215C
DL21T, DL21TBM
``` \& \[
\begin{aligned}
\& 17 \mathrm{C} 2,17 \mathrm{C} 2 \mathrm{BM}, \\
\& 17 \mathrm{C} 4 \\
\& 17 \mathrm{~T} 6,17 \mathrm{~T} 6 \mathrm{BM}, \\
\& 17 \mathrm{~T}, 17 \mathrm{~T} 9 \mathrm{BM} \\
\& \\
\& \\
\& 173 \mathrm{~T}, 173 \mathrm{TBM}, \\
\& 175 \mathrm{C}, 175 \mathrm{CBM}, \\
\& 177 \mathrm{CD}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { No } \\
\& \\
\& \text { No } \\
\& \text { No } \\
\& \text { No }
\end{aligned}
\] \& \begin{tabular}{l}
17 BP 4 or 17RP4 17BP4 or 17RP4 21AP4 \\
21EP4 \\
24 AP 4 \\
17BP4 or 17RP4 \\
21AP4 \\
21 EP 4
\end{tabular} \& \[
\begin{aligned}
\& 13 \\
\& 13 \\
\& 16 \\
\& 16 \\
\& 16 \\
\& \\
\& 13 \\
\& 16 \\
\& 16
\end{aligned}
\] \& \[
\begin{aligned}
\& 21 \\
\& 21 \\
\& 21 \\
\& 21 \\
\& 21 \\
\& 20 \\
\& 21 \\
\& 21
\end{aligned}
\] \& \begin{tabular}{l}
Yes \\
Yes
\end{tabular} \& \begin{tabular}{l}
Ord \\
Ord Ord Ord Ord \\
Ord Ord Ord
\end{tabular} \& 3
3
3
3
3
3

3
3
3

3 \&  \& | Strip |
| :--- |
| Strip Strip Strip Strip |
| Strip Strip Strip | \& \[

$$
\begin{array}{r}
10 \\
6 \\
10 \\
6 \\
8 \\
\\
6 \\
10 \\
6
\end{array}
$$
\] \& Tur, C

Tur, C
Tur, C
Tur, C
Tur, C
Tur, C
Tur, C

Tur, C \& $$
\begin{aligned}
& \text { No } \\
& \\
& \text { No } \\
& \text { No } \\
& \text { No }
\end{aligned}
$$ <br>

\hline Firestone Tire and Rubber Co. Akron, Ohio \& | 13-G-107 |
| :--- |
| 13-G-109 |
| 13-G-109A |
| 13-G-110 |
| 13-G-114 |
| 13-G-115 |
| 13-G-116 |
| 13-G-117 |
| 13-G-119 |
| 13-G-120 |
| 13-G-121 |
| 13-G-122 |
| 13-G-124 |
| 13-G-185 |
| 13-G-126 | \& \[

$$
\begin{aligned}
& 700140 \\
& 700104 \\
& 700104 \\
& \text { MS31C A } \\
& 81700 \\
& \text { MS31C A } \\
& \text { MS31C A } \\
& \text { S17D1 } \\
& \text { MS31C A } \\
& \text { MS31C A } \\
& 82001 \\
& 82001 \\
& 82000 \\
& 81700 \\
& 82001
\end{aligned}
$$
\] \& No

No
No
No
No
No
No
No
No
AM-FM
No
No
No

AM-FM \& $$
\begin{aligned}
& 20 \mathrm{CP} 4 \\
& 17 \mathrm{HP} 4 \\
& 17 \mathrm{HP} 4 \\
& 21 \mathrm{MP} 4 \\
& 17 \mathrm{HP} 4 \\
& 21 \mathrm{MP} 4 \\
& 21 \mathrm{MP} 4 \\
& 17 \mathrm{HP} 4 \\
& 21 \mathrm{MP} 4 \\
& 21 \mathrm{MP} 4 \\
& 20 \mathrm{HP} 4 \mathrm{~A} \\
& 20 \mathrm{CP} 4 \\
& 20 \mathrm{HP} 4 \mathrm{~A} \\
& 17 \mathrm{HP} 4 \\
& 21
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 13 \\
& 12 \\
& 12 \\
& 16 \\
& 12 \\
& 16 \\
& 16 \\
& 12 \\
& 16 \\
& 16 \\
& 14 \\
& 14 \\
& 14 \\
& 13 \\
& 14
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20 \\
& 20 \\
& 20 \\
& 23 \\
& 20 \\
& 23 \\
& 23 \\
& 20 \\
& 23 \\
& 23 \\
& 26 \\
& 21 \\
& 21 \\
& 21 \\
& 26
\end{aligned}
$$

\] \& | Yes |
| :--- |
| Yes | \& | Ord |
| :--- |
| Ord |
| Ord |
| Key |
| Ord |
| Key |
| Key |
| Ord |
| Key |
| Key |
| Ord | \& \[

$$
\begin{aligned}
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3 \\
& 3
\end{aligned}
$$

\] \& \[

$$
\begin{array}{lll}
25 & 7 \\
25 & 7 \\
25 & 7 \\
26 & 2 \\
25 & 7 \\
26 & 2 \\
26 & 2 \\
25 & 7 \\
26 & 2 \\
26 & 2 \\
25 & 7 \\
25 & 7 \\
25 & 7 \\
25 & 7 \\
25 & 7
\end{array}
$$

\] \& | Ex Conv |
| :--- |
| Ex Conv |
| Ex Conv |
| Strip |
| Ex Conv |
| Strip |
| Strip |
| Ex Conv |
| Strip |
| Strip |
| Ex Conv | \& \[

$$
\begin{array}{|r}
5 \\
8 \\
5 \\
8 \\
5 \\
6 \\
6 \\
8 \\
12 \\
12 \\
8 \\
10 \\
5 \\
5 \\
8
\end{array}
$$
\] \&  \& No

No
No
No
No
No
No
No
No
No
No
No
No
No
No <br>

\hline | General Electric Company |
| :--- |
| Receiver Department Electronics Park Syracuse, N. Y. | \& \[

$$
\begin{aligned}
& 17 \mathrm{C} 125 \\
& 17 \mathrm{~T} 10,17 \mathrm{~T} 11,17 \mathrm{~T} 12 \\
& 20 \mathrm{C} 106 \\
& 20 \mathrm{C} 107 \\
& 21 \mathrm{C} 200 \\
& 21 \mathrm{C} 201,-202,-206,-208 \mathrm{U}, \\
& 21214,21 \mathrm{~T} 1 \mathrm{U} \\
& 21 \mathrm{C} 20.4,21 \mathrm{C} 208,21 \mathrm{~T} 1 \\
& 21 \mathrm{~T} 2,21 \mathrm{~T} 1,21 \mathrm{~T} 5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{E} \\
& \mathrm{~A} / \mathrm{K} \\
& \mathrm{~A} / \mathrm{K} \\
& \mathrm{E} \\
& \mathrm{~A} / \mathrm{K} \\
& \mathrm{E} \\
& \mathrm{E} \\
& \mathrm{~A} / \mathrm{K}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { No } \\
& \text { No }
\end{aligned}
$$
\] \& 17 BP 4 A

17 BP 4 A
20 CP 4 A
20 CP 4 A or
20 DP 4 A
21 EP 4 B
21 EP 4 B
21 EP 4 A

21 EP 4 B \& $$
\begin{aligned}
& 14-16 \\
& 13 \\
& 13 \\
& 14-16 \\
& 13 \\
& 16 \\
& 16 \\
& 13
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& \\
& 20 \\
& 20
\end{aligned}
$$

\] \& | Yes |
| :--- |
| Yes | \& | Spec |
| :--- |
| Spec. | \& 3

3
3
3
3
3
3
3

3 \& \[
\left\lvert\, $$
\begin{array}{lc}
45 & 75 \\
45 & 75 \\
45 & 75 \\
45 & .75 \\
45 & 75 \\
45 & 75 \\
45 & 75 \\
45 & .75
\end{array}
$$\right.

\] \& | Int Conv (3) |
| :--- |
| int Conv (3) |
| Int Conv (3) |
| Int Couv (3) |
| Int Conv (3) | \& 8

$51 / 4$
12
10
12
12
12

$51 / 4$ \& | Sw |
| :--- |
| Sw | \& No

No
No
No
No
No
No
No <br>

\hline Hoffman Radio Corp. 6200 S. Avalon Los Angeles, Calif. \& | 7M103. 7B104, 7 Pl 104 7M109, 713110.7P111 7M109B, 7B110B. 7P111B 7M112. 7 13113, 7P114 7M112B, 7B11313, 7P114B 7M30, 713104, 7P304 $20 \mathrm{M1011}$, 20B102F |
| :--- |
| 21M106, 2] B107, 21P108 |
| 21M11S, 21B119, 21P120 |
| 21M191, 21B122, 21P123 |
| 21 M300, 21 B301 |
| 21M305, 21 R306, 21 P307 |
| 21M308, 2113309, 21P310 |
| 21M311, 2113312, 21P313 |
| Q1M503, 2113504. 21P505 |
| 21 M506, $9113507, ~ \because 1 P 508$ |
| 21M700, 211\%01, 211~02 |
| 21M703, 213704, 21P705 |
| 21 H 900 , $21 \mathrm{B901}$.21 P 0 ? |
| Q1M90: 2lB904. 21P005 |
| 27M709, $27 \mathrm{B7} 10.21 \mathrm{P} 11$ |
| $21 \mathrm{M} 906 \mathrm{~B}, 213007 \mathrm{~B}, 21 \mathrm{P} 06 \mathrm{jsB}$ | \& 190

200
210
202
212
212
190
194
191
198
211
191
201
196
198
191
211
196
198
192
213
197

19813 \& | No |
| :--- |
| No |
| AM-FM |
| No |
| No |
| AM-FM | \& 17

17
17
17
17
17
17
20
21
21
21
21
21
2
21
21
91
21
21
21
21
21
21
21
27

21 \& $$
\begin{aligned}
& 13.5 \\
& 13.5 \\
& 16 \\
& 15.5 \\
& 16 \\
& 13.5 \\
& 13.5 \\
& 13.5 \\
& 16 \\
& 16 \\
& 13.5 \\
& 15.5 \\
& 16 \\
& 16 \\
& 13.5 \\
& 16 \\
& 16 \\
& 16 \\
& 13.5 \\
& 16 \\
& 21
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 24 \\
& 18 \\
& 18 \\
& 18 \\
& 18 \\
& 24 \\
& 24 \\
& 24 \\
& 25 \\
& 18 \\
& 24 \\
& 18 \\
& 24 \\
& 25 \\
& 24 \\
& 18 \\
& 24 \\
& 25 \\
& 33 \\
& 20 \\
& 30 \\
& 24
\end{aligned}
$$

\] \& | Yes |
| :--- |
| Yes | \& | Key Ord Ord Ord Ord |
| :--- |
| Key Key Key Key Ord Key Ord Key Key Key Ord Key Key Key Ord Key Key | \& 4

3
3
3
3
4
4
4
4
3
4
3
4
4
4
4
3
4
4
4
4
3 \& 25.5
26
26.95
26.25
26.25
25.5
25
25.5
4.5
26.25
25.5
26.25
45.75
45.75
25.5
26.25
45.75
45.75
25
96.55
45.75
45.75 \& Strip \& $5^{16}$
5
5
5
5
$5^{16}$
5
$5^{16}$
5 PM
5
$5^{16}$
8
$5^{18}$
5 PM
$5^{18}$
5
5
5
12
8
$5^{18}$
$5^{18}$ \& Tur, C
Tur,
Tur,
Tur,
Tur,
Tur,
Tur,
Tur
Tur,
\& No
No
No
No
No
No
No
No
Nun
No
No
No
No
Tun
No
No
No
No
Ph
No
No
Ph <br>
\hline
\end{tabular}



| 28롤 |  | ここここご気 | ※ ※ ※ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 急急采 | 点品易 | 急怘 |
| ㄲํํㅗㅗ |  | $\frac{9}{\frac{9}{6}} 90^{\frac{5}{3}}$ | ㄲํํㅇํ 우ํㅗํํ | $\infty$ cosis |  | $\infty \infty$ |
| 部岩言 忥気 |  |  |  |  |  | 象家 |
| 2828 |  | （1） |  |  | 28 P | ¢ |
| 83 838 |  | \％ $8: \% 8$ | 8 8 8 8 83 | \％\％星気 | \＆゙ざき | \％\％ |
| 0 m |  | ＊＋＋＋ | ＋＋ | －＋＋ | － | $\infty$ |
|  |  | 离离离氙离 |  |  | 氙灾家 | 긍몽 |
| －\％\％ |  |  |  |  | $\stackrel{\square}{\sim}$ | ¢ |
| 75 ${ }^{2}$ |  | ¢\％\％ั\％\％ | \％\％¢ ¢ ¢ ¢ ¢ | ご々こ | ずずす | 9\％ |
| こさを | ワッワワ さ－ |  |  |  | むざ | $\pm \pm$ |
| 万す5 |  |  |  |  | \％\％\％ | 空范 |
|  | 8月我 |  |  |  |  | \％${ }^{\circ}$ |
|  |  |  |  | a\％\％e\％ |  | 프를 |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |



| Packard-Bell Co. 12333 Olympic Bivd. Los Angeles 64, Calif. | ```2721 Sup. Dlx. 2722 2723 Std.".2724 2723 Dlx. 2921 2922``` | $\begin{aligned} & 2720 \\ & 2720 \\ & 2710 \\ & 2710 \\ & 2921 \\ & 2922 \end{aligned}$ | No <br> No <br> No <br> No <br> AM <br> $\mathbf{A M}$ | 21 <br> 24 <br> 21 <br> 21 <br> 21 <br> 24 | $\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$ | $\begin{aligned} & 27 \\ & 97 \\ & 27 \\ & 27 \\ & 29 \\ & 29 \end{aligned}$ | Yes <br> Yes <br> Yes <br> Yes <br> Yes <br> Yes | Key Key Key Key Key Key | 4 4 4 4 4 | 25.0 <br> 25.0 <br> 25.0 <br> 25.0 <br> 25.0 <br> 25.0 | Strip <br> Strip <br> Strip <br> Strip <br> Strip <br> Strip | $\begin{aligned} & 10 \\ & 10 \\ & 6 \\ & 10 \\ & 10 \\ & (2) 6 \times 9 \end{aligned}$ | Tur, C <br> Tur, C | PJ, CJ <br> PJ, CJ <br> PJ, C.J <br> PJ, CJ <br> Ph <br> Ph |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Philharmonic Radio \& TV <br> 235 Jersey Ave. <br> New Brunswick, N. J. | 817 <br> 920 <br> 921 <br> 924 <br> 8117 <br> 9120 <br> 9121 <br> 9820 <br> 9821 <br> 9821 Decorator models |  | No <br> No | $\begin{aligned} & 17 \mathrm{BP} 4 \\ & 20 \mathrm{CP} 4 \\ & 21 \mathrm{EP} 4 \\ & 24 \mathrm{AP} 4 \\ & 17 \mathrm{BP} 4 \\ & 20 \mathrm{CP} 4 \\ & 21 \mathrm{EP} 4 \\ & 20 \mathrm{CP} 4 \\ & 21 \mathrm{EP} 4 \\ & 21 \mathrm{EP} 4 \end{aligned}$ | $\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$ | 19 19 19 19 19 19 19 19 19 19 | Yes | Ord <br> Ord | 3 | 25.75 <br> 25.75 | Strip <br> Strip | 5 5 5 $(2)$ 8 8 8 8 10 10 $(2) 8$ | Sw, <br> Tur, C <br> Tur, C <br> Tur, C <br> Sw <br> Tur, C | PJ <br> PJ |
| Philmore Manufacturing Co., Inc. 113 University Place New York, N. Y. | $\begin{aligned} & \mathrm{CP} \\ & \mathrm{CP} \end{aligned}$ | $781 \mathrm{D}$ | $\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 17-24 \\ & 17-24 \end{aligned}$ | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | $\begin{aligned} & 31 \\ & 30 \end{aligned}$ | No No | Key Key | 4 | $\left\|\begin{array}{l} 25.75 \\ 25.75 \end{array}\right\|$ | Strip Strip | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | $\begin{aligned} & \text { Tur, C } \\ & \text { Tur, C } \end{aligned}$ | $\begin{aligned} & \mathbf{P J} \\ & \mathbf{P J} \end{aligned}$ |
| Radio Craftsmen, Inc. 4401 N. Ravenswood Chicago 40, Ill. | C202 | None | No | $\begin{aligned} & \text { 17HP4, } \\ & \text { 21FP4A or } \\ & \text { 24BP4A } \end{aligned}$ | 16 | 27 | No | Key | 4 | 26.1 | Strip | None | Tur, C | No |
| Raytheon Television and Radio Corporation 5927 West Dickens Ave. Chicago, Ill. | $\mathrm{M}-1733 \mathrm{~A}$ $\mathrm{M}-1734 \mathrm{~A}$ $\mathrm{C}-1735 \mathrm{~A}$ $\mathrm{C}-1736 \mathrm{~A}$ $\mathrm{M}-2107 \mathrm{~A}$ $\mathrm{C}-2108 \mathrm{~A}$ $\mathrm{C}-2109 \mathrm{~A}$ $\mathrm{C}-2110 \mathrm{~A}$ $\mathrm{C}-2111 \mathrm{~A}$ $\mathrm{C}-2112 \mathrm{~A}$ $\mathrm{C}-2113 \mathrm{~A}$ $\mathrm{C}-2114 \mathrm{~A}$ $\mathrm{C}-2115 \mathrm{~A}$ $\mathrm{C}-2116 \mathrm{~A}$ $\mathrm{RC}-2117 \mathrm{~A}$ $\mathrm{C}-2118 \mathrm{~A}$ | 17T1 <br> 17T2 <br> 17 T <br> 17 Tl <br> $21 T 1$ <br> 21T1 <br> $21 T 2$ <br> $21 T 1$ <br> $21 T 1$ <br> $21 T 3$ <br> 21T3 <br> $21 T 3$ <br> $21 T 3$ <br> $21 T 3$ <br> $21 T 3$ <br> $21 T 8$ | No No No No No No No No No AM AM AM AM VHF-AM AM AM | $\begin{aligned} & 17 \mathrm{HP} 4 \\ & \text { 21FP4A } \end{aligned}$ | 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 | 18 20 18 18 18 18 20 18 18 29 29 29 29 29 29 29 | Yes Yes <br> Yes | Ord <br> Key | 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 | 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 | UHFT <br> Int Tune UHFT UHFT UHFT UHFT Int Tune UHFT UHFT Int Tune | 5 5 6 6 5 10 10 10 10 10 10 10 10 10 10 10 | Con, C <br> Con, C | No |
| RCA Victor Division Radio Corporation of America Camden, N. J. | 17T200 Shelley <br> 17T201 Hadley <br> 17T202 Kentwood <br> 17T211 Ashton <br> 17T220 Albury <br> 17T250DE Brett <br> 17T261DE Ainsworth <br> 21T207 Crandall <br> 21T208 Lambert <br> 21T217 Brookfeld <br> 21T218 Lansford <br> 21T227 Lindale <br> 21T228 Brandon <br> 21T229 Belgrove <br> 21T169DE Selfridge <br> 21T165DE Meredith <br> 21T166DE Farrington <br> 21T174DE Bancroft | KCS7? <br> KCS72 <br> KCS72 <br> KCs72 <br> KCS72 <br> KC574 <br> KCS74 <br> KCS72A <br> KCS72A <br> KCSizA <br> KCS72A <br> KCS72A <br> KCS72A <br> KCS72A <br> KCS68F <br> KCS68F <br> KCS68F <br> KCS68F | $\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 17 \mathrm{QP} 4 \\ & 21 \mathrm{AP} \\ & 21 \mathrm{AP} \\ & 21 \mathrm{AP} \\ & 21 \mathrm{AP} 4 \\ & 21 \mathrm{AP} \\ & 21 \mathrm{AP} 4 \\ & 21 \mathrm{AP} \\ & 21 \mathrm{AP} 4 \\ & 21 \mathrm{AP} \\ & 21 \mathrm{AP} \\ & 21 \mathrm{AP} \end{aligned}$ | 13.6 13.6 13.6 13.6 13.6 15.0 15.0 13.6 13.6 13.6 13.6 13.6 13.6 13.6 17.5 17.5 17.5 17.5 | 23 23 23 23 23 23 23 23 23 23 23 23 23 23 25 25 25 25 | Yes | Key Key Key Key Key <br> Kеу <br> Key <br> Key | 3 3 3 3 3 4 4 3 3 3 3 3 3 3 | $\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 41 \\ & 41 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 41 \\ & 41 \\ & 41 \\ & 41 \end{aligned}$ | Ex Conv Ex Conv Ex Conv Ex Conv Ex Conv Ex Conv, X Ex Conv, X Ex Conv Ex Conv Ex Conv Cx Conv Ex Conv Ex Conv Ex Conv Ex Conv, X Ex Conv, X Ex Conv, X Ex Conv, X | 5 5 5 8 8 8 12 8 8 8 12 12 12 8 8 12 12 12 | Sw, C <br> Sw  C <br> Sw, C <br> Sw, C <br> Sw, C | PJ |



| Sonora Radio \& Telev. Corp. 2023 W. Carroll, Chicago 12, III. | $\begin{aligned} & 491,42 \mathrm{4}, \\ & 493,424,495,426 \end{aligned}$ | $\begin{array}{\|l\|} \text { RRT } \\ \text { BST } \end{array}$ | $\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { 17TP4 } \\ & \text { Q1MP4 } \end{aligned}$ | $\begin{aligned} & 14 \\ & 14 \end{aligned}$ | $\begin{aligned} & 19 \\ & 19 \end{aligned}$ | $\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & \text { Ord } \\ & \text { Ord } \end{aligned}$ | 3 | $\begin{aligned} & 96.4 \\ & 26.4 \end{aligned}$ | $\begin{aligned} & \text { Sirip } \\ & \text { Strip } \\ & \text { Stion } \end{aligned}$ | $8$ | $\begin{aligned} & \text { Tur } \\ & \text { Tur } \end{aligned}$ | $\begin{gathered} \text { No } \\ \text { No } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sparton Radio-Television 2400 E. Ganson St. Jackson, Mich. | ```5301 (Danbury) 5325 (Devonshire) 5340 (Glenhurst) 5342 (Gilmore) 5362 (Radford) 5380 (Courtland) 5389 (Carrington), 5384 (Crestwood), 5386 (Courtney) 5392 (Cambridge)``` |  | No <br> AM-FM | $\begin{aligned} & 17 \\ & 17 \\ & 21 \\ & 21 \\ & 21 \\ & 17 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$ | $\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 16 \\ & 14 \\ & 14 \\ & 16 \\ & 16 \end{aligned}$ | $\begin{aligned} & 21 \\ & 25 \\ & 21 \\ & 21 \\ & 25 \\ & 25 \\ & 25 \\ & 21 \\ & 25 \\ & 25 \end{aligned}$ | Yes Yes Yes Yes Yes Yes Yes Yes | Ord Key Ord Key Key Ord <br> Key Key | 3 | $\begin{aligned} & 26.25 \\ & 26 \\ & 26.95 \\ & 26.25 \\ & 26 \\ & 26.25 \\ & 26 \\ & 26.25 \\ & 26.25 \\ & 26 . \\ & 26 \\ & 26.25 \end{aligned}$ | Strip Strip Strip Stip Strip Strip Strip Strip | $\begin{array}{r} 6 \\ 6 \\ 6 \\ 6 \\ 10 \\ 10 \\ \\ 10 \\ 10 \\ \hline \end{array}$ | Tur, C Tur, Tur, Tur, Tur, Tur, Tur, T Tur, Tur, C T | No No No No No No No No No |
| Starrett Television 601 W. 26th St. New York 1, N. Y. | $\begin{aligned} & 17 \mathrm{CG} \\ & 17 \mathrm{TG}, 17 \mathrm{TW} \\ & 20 \mathrm{TG}, 20 \mathrm{TW} \\ & 20 \mathrm{CD}, 20 \mathrm{Cz} \end{aligned}$ | $\begin{aligned} & 17 \mathrm{~S} 1 \\ & 17 \mathrm{~S} 1 \\ & 18 \mathrm{~S} 1 \\ & 18 \mathrm{~S} 1 \end{aligned}$ | No <br> No <br> No <br> No | $\begin{aligned} & 17 \\ & 17 \\ & 20 \\ & 20 \end{aligned}$ | $\begin{aligned} & 13.3 \\ & 13.3 \\ & 13.3 \\ & 13.3 \end{aligned}$ | $\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$ | $\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$ | Ord <br> Ord <br> Ord <br> Ord | 3 | $\begin{aligned} & 25.75 \\ & 25.75 \\ & 25.75 \\ & 25.75 \end{aligned}$ | $\begin{aligned} & \text { Strip }{ }^{19} \\ & \text { Strip }^{19} \\ & \text { Strip }{ }^{19} \\ & \text { Strip }{ }^{19} \end{aligned}$ | $\begin{aligned} & 8 \\ & 5 \\ & 5 \\ & 5 \\ & 8 \end{aligned}$ |  | No <br> No |
| Stewart-Warner Electric 1300 N. Kostner Ave. Chicago 51, III. | $\begin{aligned} & 20 \mathrm{C}-9124-\mathrm{A} \\ & 21 \mathrm{~T}-913 \mathrm{~A} \\ & 91 \mathrm{~A}-9210-\mathrm{A}, 21 \mathrm{~T}-9211-\mathrm{B},-\mathrm{C} \\ & 21 \mathrm{C}-9211 \mathrm{D},-\mathrm{E},-\mathrm{F} \\ & 27 \mathrm{C}-9212-\mathrm{A} \\ & \hline \end{aligned}$ |  | AM-FM <br> No <br> No <br> No <br> No | $\begin{aligned} & \text { 20CP4 } \\ & \text { 21AP4 } \\ & \text { 21AP4 } \\ & \text { 21AP4 } \\ & 27 \mathrm{NP} \end{aligned}$ | $\begin{aligned} & 12.5 \\ & 12.5 \\ & 12.5 \\ & 12.5 \\ & 18 \end{aligned}$ | $\begin{aligned} & 31 \\ & 26 \\ & 19 \\ & 19 \\ & 91 \end{aligned}$ | $\begin{array}{\|l} \text { Yes } \\ \text { Yes } \end{array}$ | Key <br> Key <br> Ord <br> Ord <br> Ord | 4 4 3 3 | $\begin{aligned} & 2675 \\ & 96.75 \\ & 2675 \\ & 9675 \\ & 96.75 \end{aligned}$ | Strip <br> Strip <br> Strip <br> Strip <br> Strip | $\begin{gathered} 12 \\ 6 \\ 6 \\ 6 \times 9 \\ 6 \times 9 \end{gathered}$ | Tur <br> Tur, <br> Tur. $C$ <br> Tur. <br> Tur, | $\begin{aligned} & \text { P.J } \\ & \text { P.J } \\ & \text { P.J. } \\ & \text { P.J.J. } \\ & \text { P.J. } \\ & \text { P.J. } \end{aligned}$ |
| Stromberg-Carlson Co. Rochester 3, N. Y. | Classic 21 ( 521 C 5 Dec .) <br> Classic 21 (521C5O) <br> Classic 21 ( 521 C 5 M ) <br> Yorkshire (521CDM) <br> Invader II (521CM) <br> Panavue ( 521 T ) | No No No No No No No | No No No No No No No | $\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$ | $\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$ | $\begin{aligned} & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$ | Key <br> Key <br> Key <br> Key <br> Key <br> Key | 4 4 4 4 4 | $\begin{aligned} & 26.4 \\ & 26.4 \\ & 26.4 \\ & 26.4 \\ & 26.4 \\ & 26.4 \\ & 264 \end{aligned}$ | $\begin{aligned} & \text { Strip } \\ & \text { Strip } \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & 8 \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & 5^{1 / 2} \end{aligned}$ | $\begin{aligned} & \text { Tur, C } \\ & \text { Tur, C } \end{aligned}$ | $\left[\begin{array}{l} \mathrm{P}, \mathrm{~J} \\ \mathrm{P} . \mathrm{J} \end{array}\right.$ |
| Sylvania Electric Corp. Radio \& Tel. Division 254 Rano St. Buffalo, N. Y. | $\begin{aligned} & 105 \\ & 120 \\ & 126 \\ & 150 \\ & 155 \\ & 179,176,177 \\ & 175 \\ & 178 \\ & 187 \end{aligned}$ | $\begin{aligned} & 504-1 \\ & 510-1 \\ & 510-1 \\ & 437-3 \\ & 437-3 \\ & 508-1 \\ & 508-1 \\ & 508-1 \\ & 603-1 \text { TV } \\ & 609-1 \\ & 509-1 \end{aligned}$ | No Noo No No No No Xo AM-FM No | $\begin{aligned} & 17 \\ & 21 \\ & 21 \\ & 17 \\ & 17 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 27 \end{aligned}$ | $\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 17 \\ & 17 \\ & 17 \\ & 99 \end{aligned}$ | $\begin{aligned} & 24 \\ & 23 \\ & 24 \\ & 24 \\ & 24 \\ & 28 \\ & 28 \\ & 28 \\ & 35 \\ & 35 \end{aligned}$ | $\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$ | Key <br> Key | 4 <br> 4 | $\begin{aligned} & 26.8 \\ & 4.75 \\ & 4.75 \\ & 26.75 \\ & 26.4 \\ & 26.4 \\ & 45.75 \\ & 4.75 \\ & 45.75 \\ & 45.75 \end{aligned}$ | $\begin{aligned} & \text { UHFT } \\ & \text { UHFT } \\ & \text { UHFT } \\ & \text { HX Conv } \\ & \text { HX Conv } \\ & \text { LHFT } \\ & \text { UHFT } \\ & \text { UHFT } \\ & \text { lat Tune } \end{aligned}$ | $\begin{aligned} & 61 / 2 \\ & 61 / 2 \\ & 8 \\ & 61 / 2 \\ & 61 / 2 \\ & 10 \\ & 61 / 2 \\ & 12 \\ & 10 \\ & \hline 10 \end{aligned}$ |  | No <br> No <br> No <br> No <br> No <br> Halo <br> Halo <br> Halo, $\mathrm{Pl}_{1}$ <br> Halo, RC |
| Tech-Master Products Co. 443 Broadway, New York 13, N. Y. |  | $\begin{aligned} & \mathrm{C} 30 \\ & 630 \mathrm{D} 24 \\ & 630 \mathrm{~S} 24 \\ & \\ & 1930 \mathrm{RC} \\ & 2430 \\ & 2431 \\ & 2+3 \mathrm{C} \\ & 5219 \\ & 5391 \end{aligned}$ | $\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No } \\ & \\ & \text { No } \\ & \text { No } \\ & \text { No } \\ & \text { FM } \\ & \text { No } \\ & \text { No } \end{aligned}$ |  | $\begin{aligned} & 15.5 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$ | $\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 31 \\ & 31 \\ & 19 \\ & 21 \end{aligned}$ | $\begin{aligned} & \text { No } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$ | Ord <br> Key <br> Key <br> Key <br> Key <br> Key <br> Key <br> Ord <br> Ord Ord | $+$ | 26.4 2575 -26.4 25.75 -964 26.4 26.4 26.4 26.4 26.4 26.4 | $\begin{aligned} & \text { Strip } \\ & \text { Strip } \\ & \text { Strip } \\ & \text { St } \\ & \text { Strip } \end{aligned}$ | $\begin{gathered} 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 8 \\ 8 \end{gathered}$ | Tur, C Tur, C Tur, C Tur, C Tur, C Tur, C Con Tur Tur | $\begin{aligned} & \text { P.J } \\ & \mathbf{K}^{13} \\ & \mathbf{K} \\ & \text { P.J } \\ & \text { P.J } \\ & \text { P.J } \\ & \text { PJ J } \\ & \text { A.C.-D.C. } \\ & \text { A.C.-D.C. } \end{aligned}$ |




Our 21st Year Training Men for Greater Incomes and Security in Radio-Television

## I SEND YOU 18 BICKITS

 of Radio Television parts and equipment. tion and experimentation. . the kind of truly PRACTICXAL Instruction ithai prepares you for your Radio-Television career. 3 includes many big kits of genuine, professional Radio-Television equipment. You perform over 300 demonstrations, experiments and construction projects You build a powerful 6-tube 2-band radio set, multi-range test meter, signal generator, signal tracer, many other projects. All equipment and lessons are yours to keep . . . you have practically everything you need to set up your own profitable Radio-Television service shop.

C The new Sprayberry "package" plan
Valuable Equipment Included
With Training

## NEW! NO OBLIGATION PLAM

You Have No Monthly Payment Contract to Sign Pay For Your Training as You Earn and Learn You can get into Radio-Television, today's fastest growing big money opportunity field, in months instead of years! My completely new "package unit" training plan prepares you in as little as 10 months or even less! No monthly payment contract to sign-thus NO RISK to you: This is America's finest, most complete, practical training-gets you ready to handle any practical job in the booming Radio-Television industry. Start your own profitable Radio-Television shop . . . or accept a good pay ing job. I have trained hundreds of successful Radio-Television technicians during the past 21 years-and stand ready to train you, even if you have no previous experience! Mail coupon and get all the facts-FREE!

## Earn Extra Money While You Learn!

All your 10 months of training is IN YOUR HOME in spare hours. Keep on with your present job and income while lesrning. With each training "package" unit, you receive each training "package plans and "Business Builder" ideas for spare time Radio-Television jobs. New television stations everywhere, open vast new opportunities for trained Radio-Television Technicians-and those in training. If you expect to be in the armed forces later, there is no better preparation than practical Sprayberry Radio-Television training.

## SPRAYBERRY ACADEMY OF RADIO 11 North canal sti

## MAIL COUPON TODAY! NO OBLIGATION

YOU BUILD ${ }_{\text {the }}$ Televistion set and
 above. INADDITION to the other tees unt
Bnown here (many are not thown because of lack of space) All tequipment 1 send you 18


## I invite you to get all the facts-

 RADIO-TELEVISION BOOKS my new I want you to have ALL the facta about -without cost! Rush coupon or my three blg Radlo Television books: "How to hake Money in Radio Television. PLUS my Dew ill istrated Televlelon Bul letin PLUS an actual sam ile Sprayberry Lesson-Al Mall FREE. No obligation and no salesman will call. Mall
coupon NoW!


SPRAYBERRY ACADEMY OF RADIO, Dept. 20-5, 118 North Conal st., Chleago 6, III.
Please rush to me all information on your 10-MONTH Radio-Tele vision Training Plan. I understand this does not obligate me and that no saleeman will call upon me. Be sure to include 3 books FREE.
$\qquad$
$\qquad$




# 100 'SCOPES ARE "GOLD MNES" 

... when you know how to use them fully on all types of service jobs


makes it easy to learn ALL ABOUT THEM!
No question about it! The cathode ray oscillo-
scope is the landiest scope is the handiest, moct useful instrmuent in radio-T' sersicing today. Servicellen who master it
get the best jobs-nake the most. noney- work get the lest jobs-make the most noney-work
lots faster-and are headed for even higer things in the future! are headed for even higger things

## MODERN OSCILLOSCOPES AND THEIR USES <br> By Jacob H. Ruiter, Jr.

of Allen B, DuMont Laboratories, Inc
326 paces. 370 illistrations. $\$ 6.00$
$\sqrt{ }$ When, where, why and exactly how to use them

## $\checkmark$ How to interpret patterns

$\checkmark$ How to handle fough jobs easier and taster


#### Abstract

Now the oscilloscone won't "stump" von-not when vou have the cleat exnlanations given he this fanous hook! It contains no involverl mathematics famous book? It contains no involved mathematics it goes right to work explaining oscilioscopes fully and showing you exactly how to use then in lab work and on AM. FAI and TV service wort-from locating troubles to handling tongh veatignment ols. Each operation is carefinly explatied including determining where and how to the the scope; Haking connections, adiusting circuit components, setting the controls and analvaing patterns fist and accurately. 370 illustrations including dozens of pattern photos matie things dowhly clear.

No other type of specific service method training can mean so much to you in terms of efficiency and greater earning power! Send for it today. See for yourself how this book can help you-before you buy!


READ IT 10 DAYS . . . at our risk!
$\square$ - 232 Ma Division.

- Madison Ave., New York 16. N. Y Send MODERN OSCILLOSCOPES AN THEIR USES for 10-DAY EXAMINATION. If I decide to keep the book, I will then remit $\$ 6.00$ plus a few cents postage in full payment. If not, I will rethrn book postpaid and owe you ${ }^{\text {nothing. }}$

Nume
City ${ }_{\text {t }}$ Zone, State
Emplover's Name \& Address
1 OUTSIDE U.S.A, Price \$8.50

## Audios

The input impedance (by virtue of the negative feedback caused by the cathode resistor) is very high indeed. This fact enables us to get adequate gain in a complete amplifier in spite of the wastage in the phase-splitter. Let us see why we have such a high input impedance. Suppose that we apply 1 volt positive to the input terminal: the cathode will rise to 0.98 volts, leaving only 0.02 volts across the grid leak. If this is 100 kilohms, the current through it will be 0.2 ta. At the input it will appear as though 1 volt has produced 0.2 ua current, so the apparent input impedance will be 5 megohms. We can use this very high resistance as the load for a pentode amplifier stage and obtain a correspondingly high increase in its voltage gain. This will make up the loss of gain in the triode phase splitter, because the two stages together would hardly have shown such a high gain normally, anyway.

## A more refined circuit

Fig. 7 shows the way in which the circuit is arranged. The supply to tube 1 passes through $R_{i}, R_{2}$ and $R_{1}$ in series, with $R_{1}$ as the useful part of the load. The load on tube 1 is $R_{1}$ in parallel with $R_{3}$ multiplied by the feedback effect in tube 2 . The impedance in shunt across $X$ and $Y$ is of the order of megohms, so that tube 1 has a very high gain; so high indeed that we can use the simple $g m R_{\text {b }}$ expression for the gain of a pentode $\left(R_{t}=R 1\right)$. $R_{z}$ is needed to prevent $Y$ from being grounded by the decoupling capacitor $C_{3}$, and $R_{2}$ is, for a.c., in parallel with $R_{4}$, the cathode load resistor of tube 2 . Since $R_{1}$ settles the voltage at which the cathode is set, and the steady current conditions in tube 2 , it cannot be made too large. We must therefore reduce the value of the plate load of tube $2, R_{5}$, and tube 2 will not be operating under ideal conditions. The values shown in Fig. 7 represent a reasonable compromise, however. (The values are all even numbers-the nearest preferred values will work in a practical circuit.)
Perhaps the most serious disadvantage of this circuit is the fact that the gain depends on the amplification factor of a pentode, a number which you never see in the books. Just how constant this quantity is I do not know.

We can, of course, stabilize the gainof the complete amplifier by using negative feedback, but here we meet another difficulty. The plate capacitance of tube 1, together with the capacitance of the unit to ground, will be in parallel with the very high pentode plate load. Perhaps with care these can be kept down to $20 \mu \mu \mathrm{f}$ but with a 5 -megohm effective load the characteristic frequency is 1,600 cycles. This means that the response will be 6 db down at 3,000 cycles, so that the feedback will only have half the expected effect on the third harmonic of 1,000 cycles, while as this stage alone is 18 db down at 12,000 cycles we shall need a relatively large feedback just to flatten the response.

This last analysis is over-developed, if you examine it critically. The average small pentode has a plate impedance of about 1 megohm, which is in parallel with the load, so that this alone shifts the characteristics frequency up to about 9 kc. Furthermore, there is no gain to be obtained by pushing up the load from say 2 megohms to 5 megohms. We shall probably do better, indeed, to drop $R_{1}$ to 33,000 , get more current through our tube and thus increase its amplification factor, at the same time widening the response slightly. We shall still get about 60 d h from our two tubes, so that if the final stages need 20 volts drive we can operate with 20 mv input. But this is neglecting the gain reduction caused by the negative feedback which I hone all my reader's use lavishly.

The circuits shown in Figs. 6 and 7 are two of the most important phasesplitter circuits. They provide a very well balanced output, are almost independent of the characteristics of the phase-splitter tube over the range of commercial tolerances, and involve no trick circuitry. The only disadvantages are that the tube must have good heater-cathode insulation (both to prevent breakdown under the voltage stress and to prevent the leakage of 60-cycle hum into the cathode resistor) and that one tube must provide sufficient swing to drive both the push-pull grids.

Thus if each grid requires 20 volts, the tube must be capable of giving 40 volts under normal amplifier conditions. When driving class-B amplifiers, such as the EL34 stage I described some time ago, which needs 40 volts peak for each grid, this demand for 80 volts peak is too much for a small tube. Some designers have therefore followed a phase-splitter of this type with a push-pull intermediate driver. I am not enamored of this solution, which puts in an additional double triode to do work which could be done better by a single tube elsewhere in the circuit.
In the article which will follow this I propose to discuss the other main type of phase-splitter. As I said in the first article, this obtains its balance by using very large amounts of negative feedback. It must not be confused with the circuit discussed above, in which the negative feedback is an unwanted result of our desire to ground one side of the input. In the circuits which follow, the negative feedback is deliberately introduced to force the two outputs to balance. But that will be another story

END


# on noise figured 

Booster performance depends

## Gain alone is NOT enough!

## CHANNEL MASTER <br> a new kind of SIICLIE CTAAMEI TV BOOSTER with the <br> Highest gain <br> Lowest noise in booster history!

- GAIN: 12 Times (22 DB), low band;
8.5 Times ( 18.6 DB), high band.
- NOI5E: 4.5 DB, low band; 6.5 DB, high band.
- The only single channel booster with CASCODE-fype CIRCUIT - Uses famous, low-noise 68Q7 tube.
- Double-funed transformers for peaking both vidso and sound.
- Antenna by-pass switch.

Actual Performance Figures prove that Katy- $\mathbf{8}$ tops 3 leading boosters?

|  | KATY-8 | Booster A | Boozter B | Booster C |
| :--- | :--- | :--- | :--- | :--- |
| Gain <br> (higt no. preferred) | 8.5 Times | 4.2 Times | 5.9 Times | 6.2 Times |
| Noise <br> (low-no, preferred) | 6.5 | 14.3 | 8 | 9.1 |
| V5WR <br> (low-ratio preferred) | $1.5: 1$ | $9: 1$ | 2.6 .1 | 3.8 .1 |
| Balance-fo-Unbalance <br> Ratio <br> (high ratio preferred) | $10: 1$ | $1.4: 1$ | $5.8: 1$ | $7.1: 1$ |

TV "snow" is noise genenated by the set and booster. The =ncunt of noise present depends primeri y upon the firs- lubz in the receiving syster.

This reass that where a sooster is usec, the amsunt of "snow" in the picfure depends almast eatirely upon the performance of the boostar. and the tubeis) it uses. Mos s ingle channel boosters on the ma-ret today have poorer Noise Figures then
nodern TV front ends. Tterefore, while These bocsters may conleibute gain, they acually deteriorte picture qua ity by add ng naise.

Katy-E is the 7 -st modern singla chainel booster. It emflcys the famous, lsw-noise 6BQ7 tub $\boldsymbol{b}$ in a Cascode-type sircu t,
which gires the lowest Noise Figure and h ghest gain ever abtained in a television booster.

# ELECTRONIC MUSIC-.the easiest may 

PART II

NOW FOR some of the constructional features of the Ondiovox. The parts most likely to be unfamiliar are the keyboard and the metal-tubing base pedestal, but neither of these should present any great difficulty if you can use simple woodworking tools and an electricians' "hickey".
Taking the keyboard assembly first, you can get a general idea of the layout from Photo A. Details are shown in Fig. 1-a and 1-b. The entire assembly was mounted on a steel foundation
plate 17 inches long, 3 inches wide, and $1 / 4$ inch thick. This slab just happened to be available, and a shallow metal radio chassis could be used as well. The base plate is just long enough to accommodate the 21 hand-made keys. These were cut from oak strips, but there is no reason why you can't use a section of an old piano or organ keyboard. The base plate or chassis is simply made long enough to accommodate the over-all width of the 21 keys.

The key switch contacts are mounted side by side on a full-length bakelite

By V. FASTENAEKELS

insulating plate, with the same center-to-center spacing as the keys. The contacts can be assembled from old phone jacks, or from Guardian type 200-3 contact assembly kits. The stack assembly screws must be countersunk in the bakelite, or kept short enough to clear the metal base. Adjust the contacts so that a slight pressure on the key closes the top pair first and energizes the keying relay; additional pressure bends the closed pair down far enough to meet the bottom contact, which grounds the appropriate resist-


Photo A (upper left)-Keyboard construction. Photo B (upper right)-Keyboard and chassis assembly. Large bulb is European neon lamp. Photo C (lower left)-Complet ed Ondiovox. Photo D (lower right)-Expression control.

TThere's no profit in sets waiting to be repaired. Profits depend on turning out more jobs . . . and cutting down on time wasting call-backs.


Midgetrols ${ }^{\circledR}$ are designed for fast, easy installation in any set, TV or radio.

Round tubular shafts can be cut accurately and quickly ... fit split-knurl or flatted-type knobs.
$A C$ switches can be attached instantly without disassembling the control.
Their unique design simplifies inventory problems . . . always available from your Mallory Distributor.
Midgetrols are engineered to duplicate the precise characteristics of original equipment. They will give equal . . . and often better performance and life than the original control.
Save time . . . find extra minutes to turn out more finished jobs . . . be sure of dependable, precision quality for all your TV and radio repairs... ask for Mallory Midgetrols the next time you call your distributor.

Another time saver. Get your copy of the Mallory Control Guide. It is a complete cross reference between set manufacturers' part numbers and the equivalent Mallory control.


Reflecto-Fan Model 4400

* Measured gain over tuned folded dipole List Price
56.75
Model 4400 (Single Bay)............. $\$ 6.75$
Model 4402 (Dual Stack) ............. . . . 14.25
Model 4450 (Single Bay) . . . . . . . . . 14.50


## WALSCO

Walter L. Schott Company
3225 Exposition Place Los Angeles 18, California


Photo E-Ondiovox pedestal is formed easily from thin-wall electrical conduit.
or in the tone-generator circuit.
The keys are pivoted on a common steel rod P , supported at the ends by drilled angle brackets. Other brackets may be inserted along the length of the key strip for adaitional support.
The extended-bass selector is a 12 pole, 3 -position switch, such as the Mallory type 1266 L . This can be mounted on a bracket at right angles to the front panel, and operated with a lever type arm, as shown in Photo c.

The step type expression (volume) control (Photo D) was assembled on a broadcast-type attenuator body, but any sturdy 21 -point wafer switch such as the Mallory type 13124 L or Centralab type 1443 will do. The shaft was fitted with a small pinion gear, driven by the foot-operated rack. The entire expression-control assembly can be made easily from an old automobile accelerator mechanism.
The pedestal was formed from thinwall electrical conduit. The bends can be made with an electricians' pipebending tool, commonly called a "hickey". The sections are drilled and bolted together at the bottom, and joined


Fig. 1-(a) Keyboard assembly details. (b) Wiring diagram of the key switches. All "A" contacts and all "B" contacts are connected in parallel. "C" contacts go to individual resistors on terminal board.
at the top in a heavy wood platform which supports the main chassis and keyboard. See Photos C and E. END

©. You'll be proud to have this completely new instrument on your service bench!

- The result of a nationwide survey of radio and television technicians makes the new TO-4 Tel-Ohmike meer your capacitor test needs to a capital "T". Trim and trustworthy, it has instant push-button range selection, magic-eye bridge balancing, safety discharge feature, direct meter readings of leakage current and insulation resistance, and a continuously adjustable test voltage for checking electrolytics at exact rated voltages.
- Two especially valuable features are the provision of a special low capacitance circuit for checking small ceramics and "gimmick" capacitors down to 1 mmf (in addition to a top capacitance range of 2000 mf ) and the simplified insulation resistance circuit with a top reading of 20,000 megohms.
- See a demonstration of this new instrument at your distributor without delay!
And the price of this new improved Tel-Ohmike is still the same . . . . Only



# CRYSTAL MARKERS for SWEEP GENERATOR 

## By BRUCE MORRISSETTE

## This simple marker generator converts an inexpensive sweep generator into a precision instrument.



Photo A-The calibrator before wiring.

SWEEP generators for aligning wide-band i.f. amplifiers in television and FM sets usually need highly accurate marker signals or pips for identifying frequency points along the response curve. Accurate markers are especially important for peaking individual coils and setting sound and adjacent-channel traps. Intercarrier receivers also require an accurate $4.5-\mathrm{mc}$ unmodulated signal for aligning sound-take-off windings and discriminators.
The two most common sources of marker signals for sweep alignment are the built-in marker (either a calibrated tunable oscillator, or a passive, absorption-type network), and the external marker oscillator or signal generator. The absorption-type marker is useful for locating points along the response curve but cannot serve as a single-frequency r.f. source for aligning individual stages. A variable marker oscillator, internal or external, not only will mark points on the curve but may be used to tune individual coils an I traps.

Both types leave much to be desired with respect to accuracy of calibration. Most modern i.f. systems are staggertuned at various fractional frequencies like $25.3 \mathrm{mc}, 23.1 \mathrm{mc}$, and 21.7 mc . Even the best tunable marker oscillators and signal generators may be off calibration by as much as 0.5 mc , making it practically impossible to align a set
exactly at the specified frequencies. A few of the more expensive TV generators are equipped with crystal calibrators which give accurate marker pips every 2.5 mc or 5 mc along the curve.

The low-cost, easy-to-construct unit described here not only gives accurate markers at $0.5-\mathrm{mc}$ intervals, but provides a $4.5-\mathrm{mc}$, crystal-controlled, pure r.f. signal for intercarrier alignment. The wide range of marker pips is adequate for almost any servicing or design need, and all have the high accuracy and stability associatel with a well-designed crystal oscillator.

Although this marker oscillatormixer was constructed to fit a Heathkit model TS-2 sweep generator, it can be installed in almost any other make or model, or built as an independent unit. The choice of crystal frequencies and the use of either separate or mixed outputs gives the unit unusual versatility. It consists of separate $4.5-\mathrm{mc}$ and 5-me crystal oscillators. Either crystal or both may be disabled by switching off the B supply to the appropriate oscillator, and each section has its own output-control potentiometer. A mixeramplitude control adjusts the combined outputs of the two crystals to any desired level, and a simple mixing network added to the sweep-generator combines the sweep signal and the crystal-marker frequencies at the sweep output terminals.

## Circuit defails

Fig. 1 is the schematic diagram of the dual-marker unit. Each section of the 656 is connected as a Pierce crystal oscillator. Using r.f. chokes rather than resistors in the plate circuits increases the output on the higher harmonics essential in this application. Amplitude of oscillation is controlled by individual potentiometers which vary the B plus voltage to each plate. Switches on these controls turn the individual oscillators off and on, by opening or closing the B plus line. With a single crystal switched on, the cathode potentiometer (R1) functions as the load resistor of a conventional cathode follower, providing the correct low-impedance match for connecting the marker in parallel with the output of the sweep generator.

When both crystals are operating, the $6 \mathbf{J} 6$ functions as a mixer, since the two triodes have a common cathode resistor. The output contains the frequency difference between the two crystals ( 0.5 mc ) and harmonics of 0.5 mc extending to 50 mc and even higher. Sum frequencies also appear in th combined output ( 9.5 mc and its harmonics), but they are superimposed on $0.5-\mathrm{mc}$ pips. The $0.5-\mathrm{mc}$ pips are given uniform amplitude by adjusting the relative outputs of the two crystal oscillators with potentiometers R2 and R3.
The height of the pips on the alignment curve itself is controlled by



Fig. 1 (left)-Schematic of the dualfrequency calibrator. Operating power may be obtained from the sweep generator or from the power supply in Fig. 2. Fig. 2 (right)-Power-supply schematic.

## Low-loss tubular twin-lead for better reception on VHF and UHF



SEAL THE ENDS IN 60 SECONDS Simply heat with match or cigarette lighter. then squeeze ends together with pliers or knife blade.


USE YOUR REGULAR HAROWARE Synkote OVALTUBE fits into the usual slotted stand-off insulator quickly and easily. No special threading, no special hardware required.



Here is a unique, practical down-lead that minimizes the effects of dirt, salt air and moisture on TV picture quality. Smooth, rounded exterior - no place for dirt to accumulate. Fits the same hardware and handles as easily as ordinary twin-lead, but gives excellent, trouble-free reception under all weather conditions!

Synkote OVALTUBE twin-lead is available now. Ask your Plastoid representative . . or mail coupon today.

[^10]cathode-potentiometer R1. (Like all marker signals, they should be kept at the lowest possible level to avoid distorting the response carve. About oneeighth to one-quarter inch is right for
the average pattern on a 3 -inch or 5 -inch oscilloscope.)

The $50-\mu \mu \mathrm{f}$ ceramic capacitors across the grid resistors give added reliability of operation in the Pierce circuit. Plate-


Photo B-Underchassis view of the completed unit. Miniature capacitors and tube reduce the overall dimensions.


Photo C-A top view of the finished calibrator. The output controls and on-off switches are at the ends of flexible leads.

supply decoupling is accomplished by resistors R 4 and R 5 and capacitors C1 and C2. Capacitors C3 and C4 isolate the crystals from the d.c. on the oscillator plates. $C 5$ couples the output from R1 through a 100 -ohm isolating resistor, which reduces interaction between the marker circuit and the sweep gener tor. The supply voltages for the marker unit are taken from the sweep generator, or the small power supply shown in Fig. 2 may be added. The total drain with both crystals functioning is less than 5 ma.

## Construction

The photographs (A, B, and C) show the unit during and after construction, and $D$ and $E$ show the unit mounted on the front panel of the Heathkit TS-2. The small aluminum chassis ( $13 / 4 \times 31 / 8 \times 1$ inch) is a standard commercial type and is supported firmly by the shaft bushing of control potentiometer R1. An aluminum bracket may be added if desired.

The photos show the layout of the tube socket, crystal holders, "outboard" tie-points for the r.f. chokes, and the triple- $0.1-\mu \mathrm{f}$ bathtub capacitor. Potentiometers R2 and R3 are mounted on the sweep-generator front panel, the $4.5-\mathrm{mc}$ control at the left and the $5-\mathrm{mc}$ control at the right. The parts values in the output circuit should be followed closely, since they were chosen to reduce interaction between the crystal markers and the sweep generator to a minimum. The only moderately expensive items are the crystals. A wellknown mail-order house (Allied Radio) offers Bliley 5-mc crystals at $\$ 2.80$ and 4.5 -mc crystals for $\$ 3.25$, bringing the total cost of the unit to about $\$ 10.00$.

## Using the marker unit

Testing and using the complete unit involves straightforward procedures. It is assumed that the reader is already familiar with the technique of applying the sweep generator to the mixer or first i.f. grid; with connecting the oscilloscope across the video-detector load resistor (preferably through an isolating resistor of about 25,000 ohms); and with supplying the scope sweep with synchronized horizontal input from the sweep generator.

First, connect the sweep generator with the built-in marker unit to a television or other wide-band-i.f. amplifier known to be approximately in alignment, or at least capable of passing the i.f. signal. Phase the sweep response curve on the scope screen or throw the blanking control-if one is provided - to the on position for singletrace operation.

Adjust the curve to normal height with the sweep-generator attenuator, and switch on the 5 -me crystal. With cathode control R1 well advanced, rotate output control R3 until a $5-\mathrm{mc}$ harmonic pip in the pass band of the i.f. strip appears on the curve. Most television-i.f. amplifiers include 25 mc somewhere near the flat top of the curve (see Fig. 3). Keep the pip ampli-


## ULTRA Q-TEE

The sensational primary area all-channel UHF-YHF antenna that employs patented* printed circuit channel separators and uses only one transmission line.

ULTRA P-TEE Suburben Operates similar to Ulita P-Tee
signed for all-channel and fringe area UHF.


VHF-UHF

UHF LONG JOHN YAGI
Single channel eight-element yagi for both primary and in twelve-element John with fiberglass boo

## UHF COLINEAR

High gain broad band fringe area UHF antenna. Four models cover entire UHF range. Also available in side-by-side array with special stacking kit.


UHF "Y"
An all-channel primary area lain antenna, povided either plain or with Mighty Match present VHF antenna using present ans antenna, using

## don't be a victim of Antennitis*



JC YAGI
The original, most popular and most powerful five-elenew low priced DC series.

LONG JOHN
The original eight-element high gain single channel yagi. Also the super high gain twelvelement Long Long John. Borh erivelso Detta Math ec omy-priced Delta Match.



MIGHTY MATCH MM-30
A small device destined to play a mighty role in combin. ing VHF.UHF antenina systems with a single transmission line Entirely automatic in opera. tion. Patented ${ }^{\text {n }}$

Only VEE-D-X offers you a truly complete line of performance-proven antennas and accessories for every area-every reception conditionevery possible combination of VHF and UHF stations.

* Antennitis-a present day epidemic of needless con. fusion concerning UHF-VHF antenna installations.


## FREE!

UHF ANTENNA GUIDE Already in its second printing, this authentic guide to UHF antenna systems tells "how, what and where" for every area.
ANUARY, 1953


12-TUBE FM-AM $\$ \$ \mathbf{8 8}$
CHASSIS COMPLETE


Here at a BIG SAVING you get a complete celebrated make AM-FM Radio Chassis for modernizing old sets, for new custom installations, built-ins, etc.
Top make latest design, with built-in pre-amp for Phono operation with either reluctance or crystal type pick-up. Tunes standard broadcast 550 to 1700 KC and FM 88 to 108 MC .
Wide range audio response (push-pull 6V6 output) and bass boost tone control. Tubes: 6BE6, 2-6BA6, 2-12AT7, 2-6SQ7, 6SH7, 6AL5, 2-6V6GT and 5Y3GT' rectifier. Attractive lighted slide rule dial.
Supplied ready to operate, complete with tubes, antennas, escutcheon and hdwe. for mtg. in a table or console cabinet, buit-ins, etc. Chassis size $131 / 2$ wide $\times{ }^{3}$ high $x, 3 \times$ deep. Cutout on 115 V 60 cycle AC . Output impedance 3.4 ohms, for any PM or Co-Axial Speaker. Shpg. wt. 20 lbs. \$56.88

## COMBINATION DEAL $\$ 9288$



Consists of above Chassis, a top make $\$ 51.50$ List Value 3 Speed Changer with GE Variable reluctance turnabout Cartridge and a $\$ 32.50$ List Value 12" Coaxial Speaker.
DEAL NO. 31A273. Shpg. wt. 38 lb $\$ 203.50$ List Value.
$\$ 92.88$

## $6 A K 5$ TUBES

Made by Sylvania and bears the name "Standard" because they were originally intended for use in Standard Boosters-otherwise the identical 6 AK5 you would obtain if buying tubes bearing the Sylvania name and for which you pay up to $\$ 2.06$ Net Each (List Price $\$ 3.90$ Ea.). Here ou get 6 for little more than the regular price of 2 and believe us-they are perfect-newfully guaranteed-a popular type widely used in Radio, TV, Boosters, etc.
No. 70A98. Pkg. of SIX 6AK5
$\$ 4.79$


Photo E-Panel of the modified sweep generator showing the added marker oscillator controls.
tude at a minimum; too much signal from the marker will distort tha curve.

Now turn off the 5 -me crystal and switch on the $4.5-\mathrm{mc}$ section. The same amplitude-regulating procedure (this time with R2) will give a pip at any harmonic of 4.5 mc which lies in the i.f. pass band. In ordinary TV receivers, the $22.5-\mathrm{mc}$ pip will be prominent on the curve. Well-designed wide-band i.f. amplifiers will also show the next harmonic pip at 27 mc (see Fig. 4).

If both harmonic pips of the $4.5-\mathrm{mc}$ crystal are visible, the bandwidth characteristics of the amplifier can be seen at a glance, since the separation of the two markers is the $4.5-\mathrm{mc}$ difference that separates video and sound carriers, and which is fundamental to the design of ideal i.f. circuits.

When each crystal is oscillating satisfactorily, as indinated by its harmonic pips, switch them both on. Adjust contrals R2 and R3, and the cathode control R1, to produce a line of uniform markers of convenient height, each of which is separated from the next by the crystal difierence frequency of exactly 0.5 mc . The response pattern should then have the appearance of Fig. 5. Output control R1 should be used to adjust the amplitude of the 0.5 -mc pips with respect to the alignment curve.
The $0.5-\mathrm{me}$ pips may be identified by noting the nearest r.ference pip from either the 5 -me or the 4.5 -mc crystal, and counting the order of the $0.5-\mathrm{mc}$ pip in question from that point. For example, the first pip above 25 mc would be 25.5 mc , the second, 26 mc ; the first pip below 25 mc is 24.5 mc , the second, 24 mc , and so on.

Some of the newer i.f. systems will need a $45-\mathrm{mc}$ pip as a reference point. Since any television-i.f. response curve must have a bandwidth of about 4.5 mc , there will always be a 4.5 - or $5-\mathrm{mc}$ reference point on the curve.
In the Heathkit and similar instruments the built-in absorption marker can be checked against the 4.5 - and 5 -mc pips and then used to identify the value of a $0.5-\mathrm{mc}$ pip, although its
accuracy without the crystal-marker guide is insufficient for precise work. Of course, an external signal generator or other active marker device may also be included in the setup, especially when it is desired to set such a device to some fractional frequency, as discussed earlier. Since there are no tuned circuits to adjust in the crystal-marker unit, its accuracy is limited only by the precision of the crystals used (in this case $\pm .02 \%$ ).
In testing or aligning an i.f. amplifier, turn on the $0.5-\mathrm{mc}$ pip series as soon as the response curve appears. Bandwidth between any two critical points can be determined almost instantly. The point at which the picturecarrier should appear, as shown in the service information for the set, is located by counting pips or running the tunable marker along the pips. If the picture carrier is not at its proper position (usually exactly halfway up on one side of the responsa curve) the i.f. stages must be adjusted to correct the misalignment. The vestigial-sideband transmission employed in television requires that modulating frequencies extending approximately 1 mc above and below the video carrier be amplified by the same amount as the higher-frequency video components for which only one side band is transmitted.

The sound i.f. carrier point, on the other hand, must be almost at the bottom at the opposite end of the curve to avoid sound interference in the picture, and to minimize 60 -cycle sync buzz in intercarrier receivers. Many of the better intercarrier sets have a "sound sheli" or flat portion near the bottom of the curve for the sound i.f. carrier. Ordinary marker systems cannot be relied on to identify this point withcut significant error, but the marker pips from the crystal unit will locate it exactly.
With the sweep generator on standby, the output of the $4.5-\mathrm{me}$ crystal can be used for intercarrier sound alignment. (The 5 -me crystal is turned off during this operation.) Service manuals explain the manner in which the


# "YOU PROFIT MORE! HERE ARE 5 BIG REASONS WHY" 



1. CBS-HYTRON IS FAMOUS... EASY TO SELL. The magic letters "CBS" are plugged for you on radio and TV station breaks . . . 102 BILLION times a year! CBS is known and respected by all your customers. CBS-Hytron is the profitable brand with endless sales assistance.
 CBS-HYTRON SPECIALIZES IN RECEIVING TUBES. Since 1921, CBS-Hytron has concentrated on receiving types. Practice makes perfect. Put those years of know-how to work for you. Let time-proved CBS-Hytron dependability cut call-backs . . . make more money for you.


CBS-HYTRON LEADS IN TV TUBES. You know them. CBS-Hytron TV originals: 1AX2, 1X2A, 6BQ6GT, 12A4, 12B4, 12BH7, 12BY7, 12BZ7, 25BQ6GT, and the original rectangular 16RP4. Even CBS-Hytron standard TV tubes are designed-for-TV ...tested-for-TV ...to give you peak performance and profit.

## 5.

CBS-HYTRON IS MATCHED-TO. THE-SET. Combined engineering skills of leading set makers and CBS-Hytron work hand in glove for you. CBS-Hytron tubes are originally set-engineered right into the sets of 9 out of 10 leading set manufacturers. No wonder CBS-Hytron is your logical matched-to-the-set replacement tube.

IT PAYS TO BE FUSSY! Just any standard brand won't do. If you want: Trouble-free, advanced performance. Maximum customer satisfaction. Minimum call-backs. More profit. Five big reasons point the way Insist on CBS-Hytron!

 channel antennas consists of Rytel's superior VHF antenna plus the new DOUBLE-O UHF design which showed such excellent results in Portland, Oregon tests, outperforming all other UHF models. Pick the stand-out performer to satisfy VHF customers and bring in the new business that UHF television broadcasting will mean.
Due to the variance in space required between UHF and VHF, it is advisable that the VHF be stacked in the conventional manner with the UHF stacked as shown. Your distributor can supply technical information.

## MODEL RDV-1-A skillfully-engineered

 VHF antenna including:New "type head made of latest "high impact" plastic; will not break, crack or swell. Unique locking design with flat metal strap to insure complete metal-to-metal contact. This means 300 times more effectiveness in electric contact, superior mechanical gripping power.
Special locking of twin leads before attach-

- ing to terminals which eliminates breaking looee of leads.
Reinforced elements with closed ends.

MODEL RDO-14-83-The new DOUBLE-O for UHF may be ordered as a separate unit. Features include:
2 circle antennas fed 90 degrees out of phase with a gain of 3.8 db , plus 1 db gain phase with a gain of 3.8 db , plus 1 db gain
over a single dipole in each of 2 circles for over a single dipole in each of 2 circles for
an overall gain in forward direction of 5.8 over

The Double-O uses air as the dielectric and is supported at a current node (ground potential).
Greater directivity along a horizontal plane. Low pickup response in vertical directions. Noise and multipath reflections cancelled out at feed-point.


RYTELELECTRONICS MFG. CO.
9820 Irwin Avenue • Inglewood, California
Also connector clips, impedance matches, tube reactivators, tube-pullers, etc. O.ver 700 Rytel distributors in the United States. Write for further information.
sound-take-off coil and the FM-detector-transformer primary and secondary are to be peaked with the $4.5-\mathrm{mc}$ signal. The precision required in this operation is shown in the following statement from an Admiral service manual (19A1): "Before proceeding, be sure to check the signal generator used in alignment against a crystal calibrator or other frequency standard for absolute frequency calibri.ion at the $4.5-\mathrm{mc}$ point. Accuracy required within one kilocycle." The 4.5-me signal from this dual-crystal unit has the required accuracy (.02\% of $4.5 \mathrm{mc}=.0002 \times 4,500,000=0.9 \mathrm{kc}$ ) and eliminates all need for additional equipment or special frequency checking in this important operation.

## Finding fractional frequencies

For extreme precision in tuning individual i.f. coils and traps, or in experimental design work with wideband television- or radar-i.f. amplifiers, this


Fig. 3-Typical i.f. response curve with 25-me marker pip from crystal calibrator.
unit allows the technician or experimenter to set an ordinary tunable marker generator to hair-line frac-tional-megacycle values. Suppose a certain i.f. stage must be peaked at exactly 22.3 mc . An ordinary signal generator set at this frequency may be putting out a signal anywhere be-


Fig. 4-Two marker pips from the $4.5-\mathrm{mc}$ crystal show i.f.-amplifier bandwidth.
tween 22 and 23 mc . But if the output of this external generator is applied to the circuit under test along with the sweep and the $0.5-\mathrm{mc}$ pips from the crystal oscillator-mixer, the tunable marker pip may be set visually at a point between the 22.0 - and the 22.5 me crystal pips corresponding in frequency to 22.3 mc . This can generally be done with very great accuracy.


Fig. 5-With both crystals in operation the over-all response curve shows accurate marker pips every half-megacycle.

This dual crystal marker unit installed in your sweep generator will convert it into an instrument of laboratory precision at the cost of about ten dollars and a few hours construction time.

## END




Imagine - my own business, a home, a new car-and the CRESCENT SCHOOL course started it all!

Gosh-I can actually earn while I learn with the practical


Learning in my spare fime is so easy with these illustrated, simplified lessons!






Two views of the capacitor checker. It is built into a plastic cigarette case.

# QUCK CAPACITOR CHECKER 

By GEORGE KELLY*

## Model 670

Accurate television service requires a GOOD 'Scope. This HICKOK 670, designed with D. C. amplifiers provides excellent square wave response on both high and low frequency. The extra sensitivity in this HICKOK 670, properly shows the response curve, even when TV receiver is far out of alignment.

Look At These

## FEATURES:

- Wide band vertical amplifier-flat to 600 KC, within 3 db , usable to beyond 5 MC .
- Horizontal amplifier 0 to 250 KC
- Astigmatic focus control provides new standard in trace sharpness.
- Excellent square wave response on both high and low frequency.
- Reversing switches for both horizontal and vertical deflection.
- Fixed sweep frequency for accurate viewing of TV wave forms 30 and 7875 cycles.
- Recurrent linear sweep 3 cycles to 50,000 cycles.
- Direct coupled, balanced (push-pull) amplifiers for vertical and horizontal deflection.
- Line frequency phasing control (approx. $180^{\circ}$ ).
- Direct connection to horizontal and verfical plates of $C R$ tube.
- Demodulator circuit for viewing modulafion on RF signal.
- Negative and positive synchronizing.
- Provision for Z-axis modulation

You'll like this Model 670. It's a perfect companion to the HICKOK 610A for accurate TV alignment. Write for complete fechnical details TODAY!
THE HICKOK] ELECTRICAL INSTRUMENT $C O$. 10531 Dupont Avenue - Cleveland 8, Ohio

CPEED is one of the first essentials in profitable servicing. Here is a pocket-sized checker that not only speeds your work but makes many tests that cannot be made with an ordinary meter. It shows open, shorted, or intermittent capacitors, leaky electrolytics, and circuit continuity. In addition it indicates whether voltage in a circuit is a.c. or d.c.

Fig. 1 shows the extremely simple circuit. The checker can be built breadboard style, or can be fitted into a plastic cigarette case (as above). If the case has a metal top the pin jacks can be mounted as shown, with the insulating shoulder washers usually supplied. If you like, a plastic top may be substituted. Mount the rectifier, capacitor, and tie lug on a small piece of bakelite or plastic, then wire in the neon lamp, resistors, and line cord. Make a small notch in the side of the case to pass the line cord.

The circuit can be checked after wiring by connecting a jumper between the red and black pin jacks, and plugging the unit into the line. The neon lamp should glow brightly. Slip the unit into the case and it is ready for use. Make two suitable test leads with insulated phone tips for the checker pin jacks at one end, and alligator clips at the other.

## Using the checker

To check paper, mica, or ceramic capacitors, disconnect one side of the capacitor completely from the circuit, connect the test leads to the red and black pin jacks, and plug the checker into the line. Good capacitors will show a single flash on the initial charge. (With small capacitance values the flash will be faint.) Intermittent or repeated flashing indicates leakage. If the neon lamp glows steadily the capacitor is shorted. There will be no flash or glow at all if the capacitor is open.

The output of the power supply is approximately 155 volts d.c. with 117 volt a.c. input. Do not use the checker
on any capacitor rated at less than 150 volts or on any equipment that is grounded or connected to the power line.

When checking electrolytic capacitors, polarity as well as working voltage must be observed. The red jack is connected to the positive side of the capacitor. The bulb will glow brightly at first, and as the capacitor charges this glow will grow dimmer until the bulb goes out. If the lamp flashes more than once per second, the electrolytic is too leaky to trust in a circuit. Flashes at the rate of one per second or longer are normal, as all electrolytics have a small leakage current.

This unit can indicate a leakage of over 300 megohms, and can be used for many types of continuity checks where an accurate resistance measurement is not required.

When using the instrument for continuity checks on resistors, appliances, or ignition systems, the lamp should


Fig. 1-The checker uses few parts.


How it is set up to check a capacitor. RADIO-ELECTRONICS

 turers of TV sets, Sangamo Type PL "Twist-Tab" electrolytics are exact replacements. They assure long life and dependable performance at $85^{\circ} \mathrm{C}$ and under conditions of high surge voltages and extreme ripple currents often found in TV applications.


Ask your distributor for a copy of the Sangamo TV Replacement Catalog. It's easy to use and helps you choose the right replacement every time.

Deal with your Sangamo "Headquarters."


## Finds Intermittent Condensers Instantly

 See Your Dist. or Order Direct
PRES-PROBECO. 4034 N. Sixth St., Milwaukee 12, Wisc.

## $\$ 3.00$ FOR CARTOON IDEAS

 RADIO-ELECTRONICS prints several radio cartoons every month. Readers are invited to contribute humorous radio ideas which can be used in cartoon form. It is not necessary that you draw a sketch, unless you wish.Address
RADIO-CARTOONS, RADIO-ELECTRONICS 25 West Broadway, New York 7, N. Y.
show a steady glow. The glow will be less bright with high circuit resistances. This provides an excellent test for the quality of the capacitor in auto ignition systems.

The checker also will test the electrical continuity of photoflash bulbs without discharging them. This will often save good flash bulbs which did not fire because of low battery voltage or defects in the flash-gun or shutter switch. A good flash bulb produces a steady glow.


The checker set up in breadboard form.
The green and black pin are used for voltage checks. The unit should not be plugged into the line for these checks. When the glow surrounds both electrodes in the neon bulb, the circuit voltage is a.c. The lamp will ignite on 65 volts and operate up to 500 volts. Only one electrode glows on d.c., igniting at 90 volts and operating up to 500 volts.

The unit also will indicate the presence of r.f. voltage around a transmitter circuit by merely bringing a single lead near the circuit while holding the other lead in the hand. Caution: Do not make an actual connection to the circuit or to the a.c. line in this case.
(This little gadget was tried out by one of the editors of Radio-Electronics and shown to students at one of the largest radio and TV schools in New York. It made such a hit that over 500 were turned out in less than a month, and each new enrollee insists on building one as soon as he learns the difference between a resistor and a capacitor.
Some handy modifications were worked out by the more ingenious students. One was to add a compact d.p.d.t. slide switch with one section in series with the a.c. line, and the other section across the red and black output terminals. With the line switch open, the other section shorts the output terminals and discharges both the internal filter capacitor and the capacitor being tested. This eliminates the danger of a shock from the test leads even with the line disconnected, since the electrolytic filter capacitor will retain its charge of 150 volts or more for a considerable time.

Another refinement was the addition of a detachable line cord. A standard television "cheater" receptacle fits neatly in the side of the case, and allows the cord to do double duty.) END

# DEALERS GETTNG WESTINCHOUSE tubes Profit from heavy LOCAL ADVERTISNG AT NO COST 

Service dealers are getting powerful local advertising support from new Westinghouse RELIATRON ${ }_{\text {TM }}$ Tube Distributors. In cities now served by Westinghouse Distributors, dealers get local newspaper advertising, a complete kit of store display and imprinted mailing material.
All of it-local ads and kits-are designed to build TV-radio service business in the dealer's local area.
Best of all, none of it costs the dealer a penny!
You can get your store listed in two local newspaper ads at no charge, and get a kit to boot. If Westinghouse Tubes are now sold in your area, see your Westinghouse Distributor and take advantage of this $\$ 900$ -


## COMING YOUR WAY

If Westinghouse Tubes are not yet distributed in your area, be patient. Distributors are being established in all market areas as fast as product availability and good service permit.
You'll soon have the chance to buy RELIATRON Tubes. Keep this tremendous opportunity in mind: you'll get newspaper advertising at no cost! Imprinted material for mailings! Imprinted signs for your window!

All of it is local advertising
which sells your service in your
All of it is local advertising
which sells your service in your own area where it counts.
For the name of your Westinghouse Distributor, or the approximate date when Westinghouse Tubes will be availinghouse Tubes will be avail-
able in your area, drop a postal card to Dept. H-201 or have your regular distributor conyour regular distributor con-
tact Dept. H-201 for information on how he can better serve you. ou on how he can better serve


ELECTKRONIC
TUBE D IVIS I O N
Westinghouse Electric Corporation Box 284, Elmira, N. Y.

# TOP-SELLIMG TV-RADIO <br> puBucations distibuted by HOWARD W. SAMS \& GO.,INC. 

## COYNE

FAMOUS SHOP-TESTED REFERENCE BOOKS

## "Latest Testing Instruments

 for Servicing Radio-TV" New 1952 edition tells all about modern electronic testing equipment and how to use it most effectively. Packed with moneymaking short-cuts on troubleshooting, servicing, construction and other subjects involving use of test instruments. Covers Multipliers, Resistors, Ohmmeters, Oscilloscopes, etc. All data shoptested for practical application. Profusely illustrated, 350 pages. ORDER CTB-3. Only

## "TV Servicing Cyclopedia"-A Best Seller

The fact-packed TV reference book by H. P. Manly Covers every phase of TV, including latest data TV works, how to service sets. Special sections on picture pattern servicing; testing and measuring; servicing; testing and measuring; plifiers, antennas, controls, ion plaps, sync. circuits, power suptraps, sync. circuits, power supplies, video IF ampliners, sweep covers everything. 750 pages. ORDER ств-I. Only

"Television and Radio Handbook"
1952 edition of the famous TV and radio "answer" book. Over 3000 facts packed into a single volume to speed trouble-shooting. Covers radio service troubles; offers short-cut time-saving tips; data on TV boosters, latest UHF conversion methods, etc. 375 pages, hundreds of illustrations. ORDER CTB-5. Only

## BOYCE authoritative ty

 \& RADIO HANDBOOKS

## POLARIZED POWER PLUGS for the expermenter

By L. B. HEDGE

' $A$ POLARIZED plug makes certain that the chassis is always grounded through the a.c. supply," I told a friend, recently, while explaining a new gadget in my shop. I was surprised to have him reply: "But who wants to buy polarized a.c. receptacles for all the places he may want to plug the thing in?"
I say his reply surprised me-it would not surprise me now, because, after questioning many friends and acquaintances and reading through a variety of electrical engineers' and electricians' handbooks, practical wiring manuals, fixture and appliance catalogs, and all manner of related publications, I find that few people seem to know, and few publications mention the fact, that virtually all power receptacles and convenience outlets used on ordinary a.c. installations are polarized. If you're as skeptical of this statement as most of my friends were, look at the receptacles in the room you're in-they're polarized if one slot is longer than the other. The opening which gives access to the white metal (grounded) contact should be not less than 0.045 inch (about $3 / 64$ inch) longer than the slot to the dark metal (hot) contact. (Fig. 1.)


Fig. 1-Practically all modern outlets are polarized with the wider blade tied to the grounded side of the line.

Polarized plugs-plugs which will enter these receptacles only when correctly oriented-are obtainable from most electrical supply houses on special order, ard a few of the larger ones will have them in stock. An ordinary (nonpolarized) plug can be easily polarized, however, by soldering a U-shaped piece of wire around one of its blades to increase its width. The large loop of an ordinary paper clip (Fig. 2) serves well


Fig. 2-Paper clip soldered around the edge of one prong polarizes the plug.
for this purpose. Cut it to length; fit it around the edge of one blade of your plug; back the blade with an asbestos


Write today for Magnemire ${ }^{\text {(1) }}$ firerature

## 4 modets

 pricedfrom Model $\$ 225$ 610-B

ORY BATTERIES Inexpensive flashlighttype cells that last 100 hours. NEW SPRING MOTOR Governor-controlled motar runs 15 minutes per winding. NEW TAPE PLAYBACK Playback and monitoring thru earphones or ext. amplifier. 81⁄2 in. D. NEW SENSITIVITY 51/2 in. H. Crystal-clear recordings up $11 / 2 \mathrm{in}$. W. to 100 feet from microphone.
AMPLIFIER CORP. of AMERICA 398 Broadway

New York 13, N. Y.


NATIONAL PLANS COMPANY
966 Broadway, New York 23 , N. Y


When writing to advertisers please mention Radio Electronics



It's said you can't tell a book by its cover. And it's tough to tell what's going on inside a TV mast until rust and water from corrosion leave an ugly streak on the roof or house wall-then it's too late.

That's one reason smart service men are guarding their reputations for good work by installing J\&L PERMA-TUBE TV masts. PERMA-TUBE is completely protected against corrosion by being pre-treated with vinsynite and coated inside and out with an exclusive metallic-pigmented vinyl resin base. In addition-PERMA.TUBE is made of special high-strength J\&L steel that stays up in storms that would flatten masts made of ordinary conduit and other types of tubing.

You can obtain PERMA-TUBE in standard lengths, diameters and wall thicknesses. It's easy and economical to install-PERMA.TUBE's new POSITIONED-FITTED joints can be slipped together in a matter of seconds.

HERE'S INSIDE INFORMATION ON WHAT CORROSION DOES

Section of ordinary conduit fubing used for TV masts after 96 hours in a salt spray test (A.S.T.M. Designation B-117-49T) to accelerate corrosion. Extensive rust inside the mast has reduced strength -caused rusty water to drain Onto the owner's home.


Section of PERMA-TUBE after 500 hours salt spray test shows no evidence of corrosion. Strength has been retained and the chance of rus streaks on owner's home are eliminated. Note sturdier wall thickness of Perma-tube sample.

FOR COMPLETE INFORMATION-MAIL THIS COUPON TODAY


Construction
sheet (Fig. 3) and solder it on. Clean off the extra solder and open up the hole in the blade and you have a first-class polarized plug (Fig. 4)-it will not go wrong-way-to into the receptacle. You can convert a dozen plugs this way in half an hour and the whole conversion will only cost a few cents.


Fig. 3-How plug is held for soldering.
In view of the widespread ignorance of the polarization of receptacles, it will be wise for you to check the wiring on those with which you plan to use polarized plugs. A neon tester or an a.c. volt-meter-even a lamp with test leads at-tached-with one side grounded (to a water pipe if your outlet is not a metal conduit and box system, to one of the mounting screws into the box if the conduit and boxes are grounded) will identify the hot side. The short slot should


Fig. 4-The completed polarized plug. be the hot one.

While you're doing this work it's not a bad idea to check all of the outlets in the house, reversing those you find improperly connected. With this done you can put polarized plugs on any hot frame or chassis devices you have and you'll be sure they're shockproof. This treatment will probably cure some of your humming audio gadgets-at least it will simplify the filtering necessary to eliminate the hum-and it will add stability to oscillators, v.t. voltmeters, and similar test gear that is not permanently wired into the 117 -volt supply.

# BUY TEST EOUTPMETT ON THIS RADICALIY NEW The Pathat pun NO INTEREST!! - NO CARRYING CHARGES!! 

USE CONVENIENT TIME PAYMENT ORDER BLANK BELOW

Model 770 is an accurate


Superior's New


MOST COMPLETE AND COMPAGT MULTISERVICE INSTRUMEMT EVER DESIGNED

* Current
* Resistance * Reactance * Inductance

Decibels
ns: D.C. Volts: $0-7.5 / 75 / 150 / 750 /$ A.C. Volts: $0-15 / 150 / 300 / 1500 / 3000$
Volts. Resistance: $0-10,000 / 100,000$ Volts. Resistance: $0-10,000 / 100,000$
ohms. $0-10$ Megohms. D.C. Current $0-7.5 / 75 \mathrm{Ma} .0-7.5 \mathrm{amps}$. Capaciły: $.001 \mathrm{Mfd}=.2 \mathrm{Mfd}$. I Mfd. -20 Mfd Electrolytic Leakage: Reads quality of electrolytics at 150 Volt test potential. Decibels: -10 Db to +18
$\mathrm{Db} .+10 \mathrm{Db}$ to $+38 \mathrm{Db} .+38 \mathrm{Db}$. to +58 Db . Reactance: 15 ohms25 K ohms 15 K ohms- $2.5 \mathrm{Meg}-$ ohms. Inductance: 5 Henry- 50 Henries 30 Henries- 10 K Henries. Plus Good-Bad scale for checking the quality of electrolytic condensers.


Sensitivity- $\mathbf{7 0 0 0}$ ohms per volt Uses latest design $2 \%$ accurate 1 Mil. D'Arsonval type
nueter. Same zero adjustment holds for both resistance ranges. It is not necessary to readjust when switching from one resistance range to another. This is an important timesasting feature never before tneluded in a V.O.M. In this price range. Housed in round-cornered, molded case. Beautiful black etehed panel. Depressed letters filled with
permanent white, insures long-lifo even with constant use. SPECIFICATIONS:
6 A.C. VOLTAGE RANGES: $0-15 / 30 / 150 / 300 / 1500 / 3000$ 6 D.C. VOLTAGE RANGES: $0-7.5 / 15 / 75 / 150 / 750 / 1500$ 4 D.C. CURRENT RANGES: $0-1.5 / 15 / 150$ MA. $0-1.5$ 2 RESISTANCE RANGES: $0-500$ Ohms 0-1 Megohm. ' 14
.90
The Model 770 comes complete with self-contained batteries, test leads and
all operating instructions.
$\qquad$
$\left.\begin{array}{l}\text { Superior's New } \\ \text { Model 670-A }\end{array}\right\}$


Comes housed in rugged, crackle-finished ste日l cabi: net complete with test
leads and operating in leads and operating in:
structions. Size $61 / 4^{\prime \prime} \times 91 / 2^{\prime \prime}$
$\$ 91$


A combinafion volf-ohm milliam meter plus capacity reactance inductance and decibel measure. ments

## SPECIFICATIONS:

D.C. VOLTS: 0 to $7.5 / 15 / 75 / 150 / 750 / 1,500 /$ A.C. VoLTS: 0 to $15 / 30 / 150 / 300 / 1,500 / 3,000$ OUTPUT VOLTS: 0 to $15 / 30 / 150 / 300 / 1,500 /$ D.C. CURRENT: 0 to $1.5 / 15 / 150 \mathrm{Ma}$. 0 to $1.5 / 15$ RESISTANCE: 0 to $1,000 / 100.000$ Ohm: 0 to 10 CAPACITY: 001 to 1 Med .1 to 50 Mfd . (QualREACTANCE: 50 to 2,500 Ohms 2,500 Ohms to INOUCTANCE: 15 to 7 Henrles 7 to $\mathbf{7 , 0 0 0}$ DECIBELS : -6 to $+18+14$ to $+38+34$ to +58

JANUARY, 1953
The Model 670 -A includes a special
GOOD-BAD scale for ehecking GOOD-BAD scale for checking the a test notential of 150 Volts.
 portable cover

- Uses the new self-cleaning Leve Action Switches for individual element testing. Because all elements are numbered occording to pin num ber in the RMA base numbering sys em, the user can instantly identify which element lis under test. Tubes having topped filaments and fubes with filaments terminating in more than one pin are truly tested with the Model iv-l as any of the pins may be placed in the neutral position ion type sockets. Uses no combina tion rype sockets. Instead individual tube. Thus it is impossible to damage tube by inserting it in damage a fube by inserting if in the wrong socket. Free-moving built-in roll tubes. - Phono jack on front' panel for plugging in either phones of external amplifier detects microphonic tubes or noise due to faulty elements and loose extermal connections.


## Superior's New <br>  <br> throws an actual bar pattern on any tv receiver screenil

 detailed operating instructions. 1 NET

## NEW TIME PAYMENT PLAN

MOSS ELECTRONIC DISTRIBUTING CO. INC
Dept. B-43, 38 Murray Street, New York 7, N. Y
Please send me the units checked below. I am enclosing the down payment with arder and ogree to pay the monthly balance as shown. It is vided I send my monthly payments when due. It is further understood that should $I$ fail to make payment when due. the full unpaid balance shall become immediately due and payable.
$\square$ MODEL 770 ..................................................... Total Price $\$ 14.90$
$\$ 2.90$ down payment. Balance $\$ 2.00$ monthly for 8 months.
$\square$ MODEL TV.11.............................................................. Price $\$ 47.50$
I $\$ 1.50$ down parment. Balance $\$ 6.00$ monthly for 6 months.
$\square$ JUNIOR SUPER METER ..........................................tal Price $\$ 21.40$ $\$ 5.40$ down payment. Balance $\$ 4.00$ monthly for 4 months.
$\square$ TELEVISION BAR GENERATOR $\quad$...................................... Price $\$ 39.95$ $\square$ MODEL $670 . \mathrm{A}$ downt. Balance $\$ 5.00$ monthly far 6 months.
$\square$ MODEL 670.A ......................................... Price $\$ 28.40$ $\$ 7.40$ down payment. Balance $\$ 3.50$ monthiy for 6 months.
$\square$ Ship C.O.D. for the down payment.
Signature

City

Connects direct to antenna post. No cónnection inside receiver.

Features-Can be used when no stations are on the air. - Provides linear patterns to adjust vertical and horizontal linearity - Provides vertical and horizontal sweep signals - Provides signal for testing video amplifiers.

[^11]


Front-panel view of shortwave converter.

## SW CONVERTER

## By RICHARD GRAHAM

THIS converter is a simple one-tube affair that will convert your present broadcast set to receive signals on the international short-wave broadcast bands, between 5.5 and 15 mc . With it you can break the chains that bind your set to the American broadcast band and multiply your listening enjoyment. Many fine educational, cultural, and musical programs can be heard daily. These originate in countries all over the world, including, of course, those from our own Voice of America stations. Many short-wave enthusiasts attempt to receive, identify,
and verify as many of these foreign stations as they can, and this is a use to which this converter is well suited.

Although the converter uses only one tube, its uerformance far exceeds that of the simple one- or two-tube receivers. This is because it takes advantage of the selectivity and sensitivity of your present broadcast set. The result is plenty of "snap." Its performance will generally be equal to the lower-priced communications receivers. Even when the converter was used with a cheap a.c.-d.c. set and a 4 -foot antenna, the results were surprising. English, Amer-


The r.f. tuning capacitor is mounted underneath the chassis.
The sensational new TRIO ZIG-ZAG TV ANTENNA has already proven its superiority in the field. Thousands of installations have given a new Word of mouth has done the rest. TRIO'S plant capacity, taxed to the limit in an effort to supply the city, taxed to the forit in on effort to supply the series, is being greatly expanded. Very soon now, your ZIG-ZAG ANTENNA will be supplied, and it's well worth waiting for.
ZIG-ZAG ANTENNAS have replaced every known type of installation and TRIO is proud to report that in EVERY instance the ZIG.ZAG AN. TENNA has out-performed them all, even the tried and true TRIO dual-channel yagi.
TV listeners are finding that with a ZIG-ZAG ANTENNA they are no longer tied down to just one or two channels, but are getting excellent recep-
SEE THEM at you JOBBERS wry
SEE THEM at your JOBBERS. WRITE for CATALOG. available in 8 different models, provide a new high in to ultra-fringe. Tremendous gain, sharp directivity, excellent match 10300 ohm line, sturdy vibration-proof construction and fast, easy installation tells the rest of the
TRIO ZIG-ZAG ANTENNA story.
tion on channels never seen before. ZIG-
ZAG ANTENNA is truly HOT on all VHF channels.


TRIO ROTATOR
A worthy companion tio the ZIG-ZAG
ANTENNA. Tested and proven under every conceivable condition of load, weaths, diraction. Positive alectriecl stons peyent dotion of ovet-rototion. Pocitive trops prevent domage even when supponing he bry eriays in, wo MPH wind Piection built of finy ariays in 80 MPH CONDITIONALLY GUARANTEED by TRIO for TWO YEARS. SMARTLY STYLED DIREC TION INDICATOR has easy to read dial lare and easy to use finger touch contral. A beouliful instrument you'll be proud fo own.


| There ZIG-ZAG ARTENNAS pro: vide ALL CHANNEE- zecephion with only ONE Antennatog. Model ZZZA fise of dil Channels 2 thtu 13 , with on gverage gain of 9 db Model ZZ 4 A is averose goin of 6 zb. on all hansnels 2 thry 13 . |
| :---: |


TRIO MAMUFACTURING COMPANY
GRPGGSVILLE, ILHNOIS
one.

- Broad band UHF - VHF plus FM reception.
- Half the cost of single channel stacked Yagis - Patented to insure price protection, U. S. Pat. Nos. 2,585,670-2,609,503, others pending.
- Pre-assembled, quick-rig, flip-out.
- Nationally advertised.

The only TV antenna that instantly beams the television set directly to the signal without a rotor.
The biggest antenna news of the year. TV technicians are marveling at this amazing powerful high gain antenna. The only antenna that brings strong signals from all directions to weak signal areas instantly . . . with a flick of the nine position switch located near the TV set.

NINE ANTENNA SWITCH COMBINATIONS


Available at local jobbers or write for name of nearest representative.
MONEY BACK GUARANTEE


130

## The woldd's most desirable oscillosespe for TV Aerrice.



Judging by ratio of sales to market potential, this laboratory grade 5" oscilloscope is preferred by the great majority of television and electronic technicians. The specifications explain why such is the case.
Specifications

Vertical Amplifier - Push-pull amplihers provide flat response within 1.5 db rom 20 cycles thru 4.5 Mc . Sensitivity Ranges-The sensitivity ranges are $.018, .18,1.8, .25,2.5,25 \mathrm{RMS}$ olts-per-inch.
Horizontal Amplifier-Push-pull with ensitivity of .55 RMS volts-per-inch Input Impedances-Vertical 1.5 meg-
ohms shunted by 20 mmfd . Direct to plates, balanced 6 megohms shunted by 11 mmid . Horizontal: 1.1 megohms. Linear Sweep Oscillator-Saw tooth wave 20 cycles to 50 Kc in 5 steps. 60 cycle sine wave also available as well as provision for using external sweep. Input Voltage Calibration-Provides a landard voltage against which to vertical input.

Vertical Polarity Heversal-for yeversing polarity of voltage being checked or for choosing either positive or negaive sync. voltages.
Return Trace Blanking-Electronic blanking provides clear, sharp trace analysis.
Synchronizing Input Control-to choose among INTERNAL, EXTERNAL, 60 CYCLE, or 120 CYCLE positions. Intensity Modulation-60 cycle internal or external thru front panel binding posts.
Accessory-Model CR-P Probe for demodulating RF and IF voltages.

Prices: Model CRO-2, Users' Net $\$ 197.50$ Model CR-P Probe, Users' Net $\$ 9.95$


## flmerican Beauty Electric Soldering Irons are Service Proven. Since 1894

These features make American Beauty the Standard-ofPerfection on the world's production lines . . . where dependability, long life and efficiency are demanded.


TEMPERATURE REGULATING STAND

Thermostatically contralled to maintain heat of Iron ak any desired temperature while at rest.

- Nickel-coated, corrosion-resistant tips, easily and quickly replaced
- Super-flexible cord, American Beauty made, resists wear due to flexing
(7) Heating element of chrome-nickel ribbon resistance wire
(2) Insulated with pure mica
- Built-in adapter for ground wire

WRITE FOR FREE LITERATURE
ican, and South American stations rolled in at full volume, actually overloading the speaker.

## A superhet tuner

Circuitwise, the converter is very similar to the mixer circuit used in the front end of many superheterodyne receivers. It changes the short-wave signal to 1500 kc by beating it with another signal from an oscillator in the converter which is 1500 kc higher (or lower) than the received signal. Converting the short-wave signal to 1500 kc enables us to tune it in on any ordinary broadcast set.


Schematic of the 1 -tube converter.
The broadcast receiver-which has been set to 1500 kc -then acts as the i.f., detector, and audio sections to complete the receiver. To avoid r.f. and oscillator tracking problems, which can be very nasty for a novice at these frequencies, the r.f. and oscillator capacitors are adjusted separately for best reception.

For economy reasons, the converter was made a.c.-d.c. To avoid serious shock, no connection is made to the chassis from the power line. But because the rotor of a variable capacitor is automatically grounded to the chassis when mounted on a panel and because of hand capacitance effects, it is necessary to ground the chassis to the line for r.f. The . $005-\mu \mathrm{f}$ capacitor between line and chassis and the . $01-\mu \mathrm{f}$ capacitors in series with the stators of the two variables isolate them from the line at 60 cycles while affecting them very little at frequencies between 5 and 15 mc. While it is still possible to get a "tickle" if the line plug is not polarized correctly, it will not be serious because of the high reactance of the capacitors at the power-line frequency of 60 cycles. The solution, of course, is simply to turn the plug over in the wall socket.

Another interesting feature is the use of a $3-\mu f$ capacitor in series with the filament to drop the line voltage to 12 volts for the 12BE6. This was actually made up of three $1-\mu \mathrm{f}, 200$-volt capacitors connected in parallel. These are seen in the left side of the photograph of the bottom wiring. If desired, a 697 ohm, 20 -watt resistor can be substituted for the $3-\mu f$ capacitor. Since a capacitor does not dissipate power, the whole converter will consume about 2

## 20 YOUR HEADQUARTERS FOR THOUSANDS OF RADIO-TV SERVICE AIDS Products of the Month



G-C RADIO SERVICE CEMENT High grade cement for radio and speaker work. Original and finest made; use for speakers, cones, spiders, loose grid caps and cube bases, etc. Water-proof.
fast drying. Brush in cap. fast drying. Brush in cap. No. 30-2-2-0z. Bottle List 65c

G-C DE-NOIZ
CONTACT CLEANER
CONTACT CLEANER
New secret ingredients dis. solve corrosion and oxidation and stop noise on contacts, volume controls, tuners, detents, switches, relays, etc. Simply apply and forget. noise disappears. Applicator. No. 51-2-2.02. Bottle List $\$ 1.60$

G-C - the company that pioneered the radio-TV service aid field - now makes more products for servicemen (and more exclusive with G-C) than anyone else. Besides this variety, you get more quality, more value for your money. That's why it pays you to insist upon getting G-C products from your jobber . . . finer products like the ones shown on this page.


G.C DUPLEX TUBE PIN STRAIGHTENER Handiest tube pin straightener you ever saw! Straightens pins on both miniature and jumbo miniature tubes, both 7 , and 9 -pin types. Precision made steel dies molded in durable plastic. No. 8655

List \$2.50

g-C television tube koat Fast-drying conductive coating for recoating outside of face is scratched or peeling. Norhing like it for TV service work. Brush in cap. No. 49.2-2-02. Bottle List $\$ 1.20$

G-C DELUXE
TV ALIGNMENT TOOL KIT
Durable leatherette roll rype case with 16 matched tools. Tools are finest quality, with steel tips of hardened spring steel; used and approved by. leading TV ser manufacturers.
$\$ 15.00$ list value. $\$ 15.00$ list value.
No. 8280
List $\$ 12.90$


G-C UNIVERSAL TV LIGHTNING ARRESTER
Underwriters' approved light. ning arrester for both 300 ohm and 450 .ohm open line, indoor and outdoor use. Safe, sure and speedy to installproved best by test. No wires to strip, not affected by heat. No. 8640

List \$1.25


Fil Write today for G-C's big illustrated catalog plus new supplements. Shows all these G-C products and thousands more. Send a postcard tight away. No obligation!


G-C RED-X CORONA DOPE New red colored corona dope to prevent corona shorts on TV sers. Fast drying. Same material as used by leading ser manufacrurers. Use on any high voltage circuit. Brush in cap.
No. 50.2-2.02. Bottle List $\$ 1.20$
 ESSENTIALS OF MICROWAVES
By Robert B．Muchmore，Hughes Aircraft Co． An expert＇s practical survey of the physical prin－ ciples of microwaves and applications of micro－ wave equipment．Word－pictures replace complicated mathematics．September 1952． 236 pages．$\$ 4.50$. Write for copy on 10－day approval
JOHN WILEY \＆SONS，INC．
440 Fourth Avenue New York 16，N．Y．

## TIMESAVER！

television technotes－
Gernsback Library Book No． 46 128 Pages． 58 Illustrations $\$ 1.50$

A real boon to TV service tect nicians．List the symptoms，causes and cures for 607 actual troubles found in scores of sets made by 27 manufacturers．Cuts down routine trouble－shooting time．


GERNSBACK PUBLICATIONS，INC．
Publishers of RADIO－ELECTRONICS 25 West Broadway．New York 7，N．Y．
watts．With a resistor substituted for fil－ ament voltage dropping，the power con－ sumption will be approximately 18 watts．

While there is nothing tricky or criti－ cal in the wiring of the unit，it is well to remember to keep all r．f．leads short and as direct as possible．Leads in this category would include those from the coils and variable capacitors．Other wir－ ing such as the power supply circuit， filament，and other a．c．wiring may be conveniently wired and then cabled if desired．This is what was done in the unit shown．

Since the converter covers a rather wide band of frequencies，it is well for the constructor to invest in some sort of vernier dial．This will make tuning much easier and smoother．The dial shown in the unit constructed has been calibrated with both a $0-100$ scale（for accurate logging）and a frequency scale．The dial can be calibrated by＂on the air＂observations and a radio log （available at most newsstands）．

A word of caution concerning fre－ quency calibration so the constructor may avoid a confusing pitfall．To make the unit simple，the r．f．and oscillator capacitors were tuned separately．Now， if an oscillator（for example）is set at 6 mc and the intermediate frequency is fixed at $1500 \mathrm{kc}(1.5 \mathrm{mc})$ ，the incoming signal can be either on $6+1.5$ ，which would be 7.5 mc ，or $6-1.5$ ，which would be 4.5 mc ．The frequency that is se－ lected is determined by the r．f．tuned circuit．In many instances the r．f．ca－ pacitor can be made to tune to either
frequency，as in the example above． Thus you can tune in two different sig－ nals at one dial setting of the oscillator capacitor．With the r．f．capacitor plates in furthest，the frequency will be the lower of the two possible received fre－ quencies．This is the best way of oper－ ating the converter，and should cause no confusion．

A switch S 1 has been provided to turn the a．c．to the converter on or off and， simultaneously，to switch the antenna from the converter to the broadcast set when the power to the converter is off，


Layout shows input－output coil shield．

## Seraice man－sIze instrument values at HUDSON！

IMMEDIATE DELIVERY

## ON ALL



## WORLD－FAMOUS

 EICD
## INSTRUMENTS AND KITS

Only EICO gives you
Laboratory Precision at Lowest Cost．
You build EICO KITS in 1 evening，but
they last a lifetime．And you SAVE OVER 50\％．
See the complete EICO line at HUDSON
－or write for latest catalog NOW．
Hudson Radio \＆TV Corp． 48 W． 48 St．，NYC R－1
$\square$ Send me FREE 192 －page 1953 Hudson Catalog
$\square$ Send me the following EICO Instruments：
$\square 425 \mathrm{~K}$ Scope Kit $\$ 44.95 \quad \square 625 \mathrm{~K}$ Tube Tester Kit $\$ 34.9 \mathrm{~S}$
\＃\＃425 Wired \＄79．95
Q 221 K YTVM KIT $\$ 25.95$
\＃\＃221 WIRED $\$ 49.95$
员 565 K V．O－M Kit $\$ 24.95$
\＃\＃565 Wired $\$ 29.95$
茴 536 KK V．O．M Kil $\$ 12.90$
\＃536 Wired $\$ 4.90$

－ 320 K Sig．Gen．Kit $\$ 19.95$ \＃\＃320 Wired $\$ 29.95$ \＃$\# 25$ Wired＇$\$ 49.95$ | 214 K VTVM Kit $\$ 34.95$ |
| :--- | D \＃214 Wired $\$ 54.95$ 377 K Audio Gen．Kit $\$ 3195$

$\# 377$ Wired $\$ 49.95$号 | 1040 K Batlery Elim．Kit $\$ 25.95$ |
| :--- | \＃1040 Wired $\$ 34.95$ \＃1040 Wired $\$ 34.95$

$\square 315 k$ Deluxe Gen．Kit $\$ 39.95$
$\square \# 15$ Wired $\$ 59.95$
 $20 \%$ deposit required with all CO．D orders
$\qquad$
Address－
City＿＿＿Slate．



JíSt 1953 HUDSON CATALOG
Over 192 pages of electronic parts and equipment ．．．complete Hi－Fi Section ．．．JAN Cross－Reference Guide ．．．the industry＇s most valuable buying taal！Send for if foday．Address Dept．R－1．

See EICO＇s other ads on pages 28 and inside back cover．
425K $5^{\prime \prime}$ PUSH－PULL SCOPE
KIT $\$ 44.95$ WIRED $\$ 79.95$


48 West 48th Street，New York 36，N．Y．
212 Fulton Street，New York 7，N．Y．

## 

ACCEPT NO SUBSTITUTE-INSIST on this latest PRECISE Original-No other "scope" can compare with this newest test instrument-BECAUSE:
PRECISE uses NO SURPLUS - only the finest components in our precision. engineered products. PRECISE offers an iron-clad guaranty with every purchase. AND PRECISE gives you an instructively illustrated, 3 color, "step-bystep" construction book-the most comprehensive in the market today!
here are a few of the numerous precise features in the NEW OSCILIOSCOPE:

1. True electronic sweep magnifier
2. Astigmatism control
3. Push-Pull vertical from input thru output; push-pull horizontal
4. Internal blanking and $Z$ modulation with blanking amplifier
5. Driven and non-driven sweep
6. Over 5MC flat response-DC amplifiers
7. Cathode follower input on vertical and horizontal
8. Internal calibrator
9. Horizontal and verlical stepping attenualor
10. NEW 7" Tube to PRECISE specifications
11. Highest sensitivity available aside from finest laboratory scopes

PRECISE TEST EQUIPMENT AVAILABLE IN KIT AND WIRED FORM


 Factory wired $\quad \$ 52.50$
$\$ 33.50$

Moofl 909 vacuum tube voltmeter: $1 \%$ Ceramic precision
Resistors: Coax DC connector: FM Resistors; Coax DC connector; FM zero alignment scale; burn-ou
proot circuit. Rugged oversize 4/2" meter factory wired . $\$ 44.98$


MODEL 912 RF PROBE. LOwEST PRICED, factory wired Probe in
the industry, Individually catibrated at 75 MC for accuracy, ImThe industry, individually catily
pedance and shunt capacity.

Wired Only \$4.25
Model 960 capacity attenuator probe. Reduces indut C . and
Foading effects oi
 scope Lawest priced in the fletid, but still using highest qualy
components.

mooet 610 RF Signa deneratar. The lowest priced signal generator in the field offering:- Same RF head as Model 630 ;
110 MC on lundament $\mathrm{s}_{\mathrm{s}} \mathbf{3 3 0} \mathrm{MC}$ on hatmontes; 60 and 400 cycle AF Cathode-follower outrut; Ext. Mod; Speech Amp.i Individually tuned coils.
Model 610 Ka $\begin{array}{ll}\text { Model } 610 \mathrm{KA} & \$ 28.95 \\ \text { Model } 610 \mathrm{~W} \\ \$ 34.94 \\ \text { (wre-assed) }\end{array}$ $\$ 23.95$


PRECISE DEVELOPMENT CORP.
Dept. RE. 13
999 LONG BEACH ROAD - OCEANSIDE, L. I., NEW YORK
GENTLEMEN: Without any obligation on my part, kindly send me the following:
$\square$ PRECISE CATALOG
$\square$ NAME OF DISTRIBUTOR NEAREST ME
NAME
ADDRESS
CITY $\qquad$ ZCNE $\qquad$

moon was Fully Automatic dEsigned for BETTER TELEVISION

What John wanted most and found hard to get, Was a booster what boosted, with no knobs to set.
"Knobs," he complained, "makes tuning more tough," And, "Lord knows", he cried, "My set has enough."
"And who needs more boxes to clutter the house? There's enough work around for me and my spouse."

"You'd laugh if I cranked my car like we useter, So why have old-fashioned knobs on a booster?"

But, John had a Tech-man who knew his TV Who showed John the booster made by B-T.


> NO knobs to set. NO channel funing. NO band-switching.

Lower noise factor. Attractive hammertone steel cabinet.


BLONDER-TONGUE LABORATORIES, INC.
WESTEIELD, NEW JERSEY
and vice versa. This is the Sw-BC switch shown on the front panel of the converter. It is shown in the "converter" position in the schematic.

## Alignment and operation

After the unit is completed, it is necessary to align the converter by adjusting L1. All that is necessary is to hook up the unit to both the broadcast set and antenna as indicated in the schematic. Next turn the power on to both the converter and broadcast set. Then set the dial of the broadcast set to 1500 kc. If an interfering broadcast signal is heard, there is no harm in shifting the dial slightly either way to tune it out. Now adjust L1 for maximum background noise or-better yet-find a short-wave station and adjust L1 for maximum volume. A good point to remember is that when returning to shortwave from the broadcast band be sure to reset the broadcast set to exactly where it was when the converter was aligned. This setting determines the sensitivity as well as the accuracy of the frequency calibration.

There is little likelihood of image interference, since the 1500 -ke i.f. separates stations that might cause this trouble by a full 3 mc . Harmonics of the receiver oscillator may give spurious reception at some points.

## Materials for converter

Resistors: 1-270, 1-22,000 ohms, 1/2 watt; 1-2,200 ohms, I watt. If desired (see text), 1-697 ohms, 20 watts.
Capacitors: (Mica) 1-50 muf; 2-. 005 нf. (paper) 2-01 $\mu \mathrm{f}_{\mathrm{i}} \mathrm{I}-3$ $\mu \mathrm{f}$ (or three $\mathrm{I}-\mu \mathrm{f}$ units): (electrolytic) 2- $40 \mu \mathrm{f}, 150$ volts: (variable) 2-1 $40 \mu \mu \mathrm{f}$ air
Miscellaneous: 1 -20-ma seilenium rectifier: I-I2BE6 tube: 1-3-pole, 2 -position switch.

## Coil Dała

LI 100 turns on $1 / 2$-inch diameter slug form, No. 34 wire
L2 4 turns of hookup wire over L1
L3 23 turns, tapped of 5 turns from bottom, wound 23 turns, tapped af 5 furns from botrom, wound L4 17 turns, $3 / 4$-inch form, $5 / 8$-inch. long, No. 22 wire L5 4 turns of hookup wire over L4
LI, L3. L4 close-wound with enamel-covered wire.
The actual frequency range of the converter is 5.5 megacycles to 16 megacycles. This covers all the important international short-wave ioroadcast bands as well as the 40 - and 20 -meter ham bands and a host of other commercial services.

End

"Have you got a five hour spool? I want my wife to hear what she sounds like!"

- GUARANTEED 10 times more powerful than stacked 10 element Yagis.
- GUARANTEED to extend fringe area reception an additional 40 miles.
- Motorless All Direction reception - nine different antennas in one.
- Broad band UHF - VHF plus FM reception.
- Half the cost of single channel stacked Yagis - Patented to insure price protection, U. S. Pat. Nos. 2,585,670 - 2,609,503, others pending.
- Pre-assembled, quick-rig, flip-out.
- Nationally advertised.

The only TV antenna that instantly beams the television set directly to the signal without a rotor.

The biggest antenna news of the year. TV technicians are marveling at this amazing powerful high gain antenna. The only antenna that brings strong signals from all directions to weak signal areas instantly . . . with a flick of the nine position switch located near the TV set.


Available at local jobbers or write for name of nearest representative.


5- Bidire
Fon Dipole

Individually packaged with complete instructions.


Judging by ratio of sales to market potential, this laboratory grade $5^{\prime \prime}$ oscilloscope is preferred by the great majority of television and electronic technicians. The specifications explain why such is the case.

## Specifications

Vertical Amplifier - Push-pull amplifiers provide flat response within 1.5 db from 20 cycles thru 4.5 Mc .
Sensitivity Ranges-The sensitivity ranges are .018, 18, 1.8, 25, 2.5, 25 RMS volts-per-inch.
Horizontal Amplifier-Push-pull with sensitivity of .55 RMS volts-per-inch. Input Impedances-Vertical 1.5 meg ohms shunted by 20 mmid . Direct to plates, balanced 6 megohms shunted by 11 mmfd . Horizontal: 1.1 megohms. Linear Sweep Oscillator-Saw tooth wave 20 cycles to 50 Kc in 5 steps. 60 cycle sine wave also available as well as provision for using external sweep. Input Voltage Calibration - Provides a standard voltage against which to measure voltages of signal applied to vertical input.

Vertical Polarity Reversal-For peversing polarity of voltage being checked or for choosing either positive or negative sync. voltages.
Return Trace Blanking-Electronic blanking provides clear, sharp trace $t 0$ prevent confusion in waveform analysis.
Synchronizing Input Control-to choose among INTERNAL, EXTERNAL, 60 CYCLE, or 120 CYCLE postions.
Intensity Modulation-60 cycle internal or external thru front panel binding posts.
Accessory-Model CR-P Probe for demodulating RF and IF voltages.

Prices: Model CRO-2, Users' Net $\$ 197.50$ Model CR-P Probe, Users' Net $\$ 9.95$

See your electronics distributor for more information, or write

## IMPPOVING OSCILLATOR AND A.V.C. OPERATION

## By JAMES SAREDA

X/HILE experimenting with all . types of receivers over a period of years, I have worked out several ways of improving the performance of the local oscillator and a.v.c. circuits in small superhets of the commercial and home-grown types.

Oscillator-pulling is one of the major problems in the design and construction of shortwave superhets. Any change in the tuning of the r.f. circuit affects the oscillator frequency whenever there is the slightest coupling between the two circuits. It is particularly bad with pentode mixers where the oscillator grid is coupled to the mixer grid through a small capacitor, but it is also noticeable in pentagrid mixers with separate oscillators when the oscillator grid and injector grid are tied together. Pulling can be reduced by taking the oscillator output from the plate, but this causes a serious reduction in the injection voltage fed to the mixer circuit from the oscillators.


Fig. 1-Oscillator-buffer arrangement.
My solution to the problem of oscillator pulling is to use the oscillator circuit shown in Fig. 1 as a replacement for the existing oscillator circuit. I use a double triode with one section conneated as the oscillator and the other as a cathode follower which acts as a buffer coupling the oscillator signal to the mixer. Since the tube is a dual triode, no extra holes, sockets, or mounting brackets are required. Simply wire in the circuit and connect the point which formerly went to the oscillator plate or grid to the cathode of the cathode follower.

The circuit shown uses tickler feedbaek but any other type of oscillator may be used. Simply tie the grids of the oscillator and cathode follower together. You can use any double triode as long as it has separate cathode connections. The 6SN7-GT is good for broadcast and slightly higher frequencies. A 7F8 is recommended for use above about 14 megacycles.

Another advantage of this circuit is that it makes approximately $90 \%$ of the oscillator voltage available at the mixer. Since the cathode follower has a low-impedance output, the lead between it and the mixer can be made long without the ill effects encountered when using plate-output circuits.

One trouble frequently encountered

## Make this resolution for 1953



## Read RADIO-ELECTRONICS <br> every month!

This year promises to be the biggest yet for TV-and for the entire electronics field for that matter. New TV stations are mushrooming up all over the country-UHF is on the march, and one after another, new developments are rolling out of the electronic research labs and production plants of the na-tion-servicing and replacements will be at a new peak. How can you possibly keep up with this feverish progress? Very easy-iust read RADIO-ELECTRONICS regularly. It gives you the latest and best articles on TV, radio and high-fidelity with emphasis on servicing, operation, construction and reports on the new and interesting,

CHECK THESE FEATURES
Scheduled for Future Publication

- A Successful TV Service Business
- High-Gain Stacked Rhombic TV Antenna
- TV Oddities
- Artificial Delay Lines
- Tubeless Amplification with diodes
- High Quality AM Tuner
- Adapting Relays
- Electropsychometer
- Hazards on the Bench
Three Years ..... $\$ 800$
Two Years ..... ${ }^{\$ 600}$
One Year ..... \$350


## three rimes.avica. OHMITE Sitle Duil

## RESISTOR ASSORTMENTS



## ALL FOR THE PRICE OF RESISTORS ALONE!

Here's a handy all-plastic resistor cabinet that's a real time-saver. Five drawers, each with eight individually-labeled compartments, make it easy to locate the right resistor and to maintain visual stock control.

The $1 / 2$-watt assortment contains 150 carefully selected Ohmite "Little Devil," individually marked, insulated composition resistors. The 1 and 2 -watt assortments each contain 125 resistors. The assortments include the 40 values ( 10 ohms to 10 megohms) most frequently used by servicemen.

This cabinet is offered at the price of the resistors alone. See your jobber.


CABINETS CAN BE STACKED ON EACH OTHER A dovetail joint is provided on top and bottom of each cabinet so they can be stacked one on top of another.

OHMITE MANUFACTURING CO., 4894 W. Flournoy Street, Chicago 44, III.

## RHEOSTATS • RESISTORS • TAP SWITCHES

in superhet circuits is caused by high harmonic output from the local oscillator. Oscillator harmonics beat with harmonics of strong local signals to produce spurious beats in the i.f. range. These beats cause a series of whistles which can be distinguished from images by the fact that they tune in and out very sharply.

I find that the harmonic output of such oscillators can be markedly reduced by rewiring the circuit to use plate-circuit tuning instead of the usual tuned-grid circuit. The circuits in Fig. 2 show tuned-plate oscillators. The circuit at $\alpha$ is used with two-winding coils and the circuit at $b$ uses tapped coils. The triode shown may be the oscillator section of a converter tube or a separate oscillator.

## A.v.c. circuits

The circuit in Fig. 3-a shows the detector-a.v.c. arrangement used in most simple superhets. This system is satisfactory in most respects but it pro-


Fig. 2-Two methods of reducing oscillator harmonics by plate-circuit tuning. duces a lot of distortion with high percentages of modulation on the signal. The villain is the 1 -megohm a.v.c. filter resistor which shunts the 500,000 -ohm diode load resistor. With the values shown, the presence of the a.v.c. circuit can produce distortion as high as $23 \%$ on a $100 \%$ modulated signal.


Fig. 3-(a) Standard a.v.c. circuit. (b) Modification for less distortion.

The remedy is to use one of the diodes of the usual duo-diode-triode used as a separate a.v.c. rectifier connected as shown in Fig. 3-b. The change is easy to make. The $100-\mu \mu \mathrm{f}$ capacitor and the

## For BETTER PERFORMANGE <br> for LASTING performanee

## ALWAYS INSTALL alwars installa <br> Quikm SPEAKERS

The ONLY SPEAKER with the U-SHAPED COIL POT and the
ADJUSt-A-CONE VOICE COIL
Write for Catalog
QUAM-NICHOLS CO.
521 E. 33rd Place
CHICAGO 16, ILLINOIS
Also Manufacturers of
QUAM Focalizer Units
Ion Traps, and
Tru-Match Transformers

## EASY TO LEARN CODE



## INSTRUGTOGRAPH GOMPANY

4701 Sheridan Rd., Dept. RC, Chicago 40. III.
$2.2-$ megohm resistor are the only components which must be added. In this circuit, the a.v.c. has little effect on the detector and distortion is reduced.

## Novel a.v.c. circuit

In almost all modern sets, a.v.c. voltage is applied to the control grids of remote-cutoff tubes in the r.f. or i.f. sections of the set. The circuit in Fig. 4 shows a system of applying the a.v.c. voltage to the screen grids of the controlled tubes. This circuit eliminates the elaborate a.v.c. network. Also, since the centrol-grid voltage does not change


Fig. 4-Circuit for supplying a.v.c. voltage to r.f.- and i.f.-amplifier screen grids for improved control action.
nearly so much as it does when the a.v.c. voltage is applied to it, the amplifiers are being operated at all times over the most linear portions of the characteristic. This reduces distortion often caused by operating remotecutoff tubes over the curved portions of the characteristic on strong signals. In the later i.f. stages where cross-modulation is not a problem, sharp-cutoff tubes can be used.


Fig. 5-Suggested detector circuit for developing positive control voltage.

The control tube in Fig. 4 is a hightransconductance, sharp-cutoff pentode. R2, R3, and R4 make up a voltage divider which supplies proper operating voltages to the screen and cathode of the control tube. The resistors are proportioned so the screen operates with maximum permissible voltage and the cathode is $3-4$ volts positive with respect to the grid. R1 is the dropping resistor supplying the screen grids of the r.f. and i.f. amplifiers controlled by a.v.c. It should be adjusted so the screen voltages are normal with no signal.
The grid of the control tube connects to a point which goes positive with increasing signal. The positive control voltage can be obtained by modifying the detector to conform with that in Fig. 5. However, if the set has a plate or infinite-impedance detector, take the control voltage from the detector cathode. In this case, bias the cathode of the control tube $3-4$ volts highe, than the no-signal cathode bias of the detector.

When a signal is received, the grid of the control tube goes increasingly positive and the drop across R1 increases. This lowers the screen voltage and reduces the gain of the r.f. and i.f. stages. Do not connect the circuit to the screen of a converter tube unless a separate oscillator tube is used because the changes in screen voltage cause frequency shift.


PRACTICAL TELEVISION SERVICING by J. R. Johnson and J. H. Newitt 334 pages, 253 helpful illustrations

Here, for only a small fraction of the price you might expect to pay is concise, clearly under standable television
training of the most practical sort: It is the ideal book for those who already know something already know something about basic radio service and now want to forge television field.

First you learn where and how TV differs from radio. You learn what equipment is needed and where and how to use it properly En all kinds of TV jobs. Every phase of trouble-
shooting is explained shooting is explained job standpoint - NOT by a lot of confusing mathematics and meaningless theory. For instance, many pages of PRACTICAL TELEVISION SERVIC. ING are devoted to locating common troubles just by visual observation.
DATA BASED ON
ACTUAL SERVICE SHOP EXPERIENOE
Dozens of actual service case histories help make puzzling jobs 250 illustrations and pattern photos explain details step by step. Other subjects include component replacement data, wiring details, hints on testing and information on subjects from fringe area reception to improving picture linearity in difficult locations.

The book that helps radio men

> CASH IN ON TV SERVICE PROFITS!

Covers every phase of television. CONSTRUCTION OPERATION VISUAL TROUBLE-

INSTRUMENT TROUBLE. SHOOTING SERVICING COMPONENTS

COMPONENT REPLACEMENT

PATTERN
ANALYSIS
SHOP HINTS, e+c.
in a way you stand.

A great book to help you pass TV service license examinations!


I READ IT 10 DAYS . . . AT OUR RISK
I Dept. RE-13. RINEHART BOOKS. INC..
Technical Division
232 Madison Ave., New York 16, N. Y. Send PRACTICAL, TELEVISION SIERVICING for 10.DAY EXAMINAT1ON. If I decide to keep the I Otherwise, I will return book postpaid and owe you | nothing.
Name
Address
City, Zone, State
Emplover's Name \& Addres
OUTSIDE U.S.A. Price $\$ 4.50$ cash only. Money

## $1: 8$ <br> Brighter, Sharper, TV Reception



## with the TVTEP Model TV-2 Booster

You get clearer, sharper pictures with a minimum of annoying interference and snow even in weak signal areas with the TURNER TV-2 Booster. It's designed with an eye to beauty as well as outstanding performance. The rich, mahogany plastic cabinet is a handsome addition to any room ... the high quality cascode circuit reduces noise and snow, producing an excellent picture even in extreme fringe areas.
The TURNER Booster is simple in operation. A single tuning knob permits fine adjustment for best reception of picture and audio over all 12 TV channels. The unit is quickly and easily installed on any television set. Get the best possible TV reception... get the TURNER Model TV-2 Booster!


## LINEAR SWEEP GENERATOR

A bootstrap type sawtooth generator produces an output waveform which is more linear and has a wider voltage range than any other type of sawtooth generator. Its principal disadvantage is the relatively long time which must elapse between sweep cycles. The basic bootstrap generator is shown in Fig. 1.

V1 is the control tube which must be triggered by a negative pulse each time a sweep stroke is desired. This tube is normally conducting heavily, drawing its current through diode V3 and resistor R1. Because of the large voltage drop across R1, C2 charges to a voltage approximately equal to $\mathbf{E}_{1}$. C1 is substantially discharged while V1 is conducting.


Fig. 1-The basic bootstrap generator.
A negative trigger pulse on the grid of V1 cuts it off and C1 begins to charge through V3. If the cathode of V3 remained at a fixed voltage level, the charge on C 1 would increase exponentially to produce a nonlinear sawtooth. In this circuit, the grid of V2 becomes more positive and the voltage drop across R2 increases in proportion to the charge on C1. The rising voltage across R2 is applied to the cathode of V3 so the voltage drop across $R 1$ and the charging current of C 1 are substantially constant so the output voltage is a linear sawtooth.

At the end of the sweep stroke, the trigger voltage drops to zero. V1 conducts and Cl discharges rapidly through it. C2 recharges through the resistance


Fig. 2-Modification for higher rates. RADIO-ELECTRONICS
of V3 in series with R2. Since C2 is usually about 10 times as large as C1, its recharging time will be considerably longer than the discharge time of C1. A new sweep stroke cannot be initiated until C2 has recharged to its original state. It is this recharging time that limits the repetitive rate of the trigger.
The circuit in Fig. 2 is a modified version of the bootstrap generator designed to provide a much higher repetition rate than the circuit in Fig. 1. The circuit is described in patent No. 2,606,287 issued to David O. McCoy. In this circuit, the grid of the cathode follower V2 connects directly to the cathode of V3 and to the plate of V1 through a . $001-\mu \mathrm{f}$ capacitor. Another . $001-\mu \mathrm{f}$ capacitor is connected between the plate of V1 and ground.

Now, during the recovery or flyback period, the lower capacitor discharges rapidly through the resistance of V1 while the upper capacitor recharges through V3 and V1 in series. Since the two capacitor values are equal and the resistances in series with then are approximately equal, the recovery time of this circuit is nearly equal to the flyback time so the trigger repetition rate is increased.

Linearity can be improved by replacing the $47,000-\mathrm{ohm}$ resistor with a con-stant-current pentode connected as shown by dashed lines.

## INDIVIDUAL PHONOGRAPH

Habitual playing of code or lan-guage-training records on the home phonograph is one sure way of making the family unhappy, particularly if the phonograph is a part of the family radio or TV combination. You will probably want to listen to your records when others in the family would rather listen to a soap opera or watch TV.


## Materials for amplifier

Miscellaneous: I-470, I-3,300 ohm, 1-watt resistors: I-l-megohm volume control with switch; I-a.f. choke, 150 henries or more (Thordorson T20C50, Stancor C-2300, or equivalent): 1-16-4f, 25-volt, i-20-, $2-40-\mu \mathrm{f}, 450$-volt electrolytic capacitors; 1-0.1. 1.003 I- $002-\mu$ f, 400 -volt poper capocitors: I-r. $f$. Choke, 80 mh ; I-half-wove power transformer. 125 volts, 15 ma , and 6.3 volts, 0.6 -amp secondories (Stancor PS-8415 or equivalent): I-6C5 tube. Socket,
chassis, input and output connectors.

You can keep the family happy by constructing the one-tube phono amplifier shown in the diagram and allowing the others the exclusive use of the radio combination.

The amplification of the single 6C5 is sufficient to provide good headphone volume when used with a crystal pickup. The L-C network across the input terminals reduces scratch and needle hiss.-A. Iwaniwsky

END

##  <br> single test - double check



MODEt
485

## synchronized crosshatch pattern generator



You control your own broacast test pattern tor initial in.
stallations and linearity adiustment stallations and linearity adjustment calls with the Simpson Model 485. Newly developed Model 485 provides a synchronized signal, modulated on the carrier frequencies of channels 2 through 6 , which can be tuned and sent through the receiver under test - anywhere, at any time! The verfical and horizontal sync pulses provide means by which the pattern is locked in on the TV receiver. Since this is a transmitted TV signal, it is not necessary to check against a broadcast pattern. linearity is double checked with a single test - no call back to cut service profits.

Dealer's net price, including special output cable for 75 and 300 ohm terminations, only $\$ 147.50$. Ask your jobber for full information or write -
SIMPSON ELECTRIC COMPANY
5200 West Kinzie Street, Chicago 44, Illinois
CO 1-1221
Another reason why Simpson is world's largest manufacturee of test equipment

## OPPORTUNITY AD-LETS

Rates-45 per word (including name, address and initials). Minimum ad 10 words. Cash must accompany all ade
except those placed by accredited akencles. Dlacount, $10 \%$. for 12 issues. Misleading or objectionable ads not accepted
Copy except those placed by accredited agencles. Dlscount, $10 \%$. for 12 issues. Misleading or objectionable ads not accepted
Copy for March issue must reach us before January 21 , 1953 . Radio. Electronies, 25 W. Broadway, New York 7, N. Y.

TUBES AND EQUIPMENT BOUGHT, SOLD AND EXX CHANGED, For a ralr deal send detalls to B. N. Genster. 15 TESTED ONE-TCBE CIRCUITS 25 INCLUDINO "Hadiobullder," catalog. Lahoratorles, II31-B Valota,
Redwond City. Californla. Redwond City, Callfornla.
WANTED-TOP PRICES PAID-Nary Selsyns 1DO. IF
 BC-221, AN/ARC-1 AN/ART-3, AN/ARC-3, RTA-1B, AN/APR-4. Lectronle Research. 712 Arch St., Philedel-
ph/a. Pa . $\frac{\text { Dher }^{2}}{} \mathrm{~Pa}$
BUY WHOLESALE- 25,000 ITEMS-CATALOO $25 c$
Mathew, $1472-\mathrm{PA}$ Broadway, N. Y. C. 36.

FCC LICENRE COACHING \&I PER LETTER. "Electronic Calculators."." Eleci ronic Mathematice." "Practical Audio Enkineering" data sheets $10 e$ each or 3 for 25 c . Riverdate. Maryland Mond Consultant, 5705 Carters Lane. ALL TYPES OF ALL TYPEs OF ANTENKAS FOH AMATEUR AND TV-FM ANTENNAB. ALL TYPES INCLUDING, Ohto. Mounts, accessories, Lowest prices. Wholesale supply Co. | Lunenturg accessories, Mass. |
| :--- |

WANTED: ALL TYPES OF RECEIVING AND TRANS-


## 136



Dan't Waste valuable time waiting for a replacement-carry it in sfock!

|  |  | COVER 70\% Ref y yeur fint |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { STANCOR } \\ & \text { DEHETHETHON } \\ & \text { YEKES } \end{aligned}$ |  | COVER 70\% REPLACEMENTS* |
| HORIZONTAL DEFLECTION |  | COVER 45\% Refliceuninis* |
|  |  | COVER 70\% Refliceuminis* |
|  | $\begin{aligned} & A-81+1 \\ & A=8121 \\ & A-8122 \end{aligned}$ | COVER $65 \%$ Reflacemenis* |

* Based on a statistical analysis of all replacement recommendations in the Stancor TV Replacement Guide. Stancor Transformers are listed in HOWARD W. SAMS' Photofact Folders and JOHM RIDER'S Tek-Files.

> OVER 50,000 TECHNICIANS HAVE LEARNED

HOW TO GET
THE MOST OUT OF BASCC TEST EQUPMENT

## ‘SERVICING BY SIENAL SUBSTITUTION' a beSt Seller for OVER 12 YEaRS! 

The Modern, Simplified, Dynamic Approach to Receiver Adjustment \& Alignment Problems.

* Nothing complicated to learn * No extra equipment to purchase * Universal...non-obsolescent * Employs only Basic Test Instruments Ask for "S.S.S." at your local Radio Parts Jobber or remit $40 \$$ in small stomps or coin directly to factory.

PRECISION APPARATUS COMPANY, INC. $92-27$ horacs nazonc bivo, timunust 4, к. r.

## B. C. ABANDONS BULLETIN

The Bulletin, long the official organ of the service technicians of Vancouver, and more recently, of the British Columbia Council of the Radio Electronic Technicians Association, has been discontinued. Abandonment of the paper was decided upon at the provincial council meeting at Nanaimo last September. The reason was the lack of an editor with journalistic training.

It was not learned whether the Vancouver association intends to continue carrying on a local paper of its own.

## NEW PHILADELPHIA GROUP

A new organization to be known as the Television Servicing Dealers Association has been formed in Philadelphia. President of the new group is Dave Krantz, chairman of the Federation of Radio Servicemen's Associations of Pennsylvania, and its secretary is Edward J. Strychowski. Louis J. Smith is vice-president, and Sam Brown treasurer.

Reasons for a new organization in Philadelphia, which already has the Philadelphia Radio Service Men's Association (PRSMA) and the Television Contractors Association (TCA), were not given.

## FRSAP TO HEAR EDITOR

The Pennsylvania Federation of Radio Servicemen's Associations (FRSAP) has tentatively arranged a series of lectures at Pittsburgh, York, Williamsport, Harrisburg, Wilkes Barre, Scranton, Reading, and Altoona. The proposed schedule at time of writing was:

January 6
January 7
January $8 \quad$ Williamsport
January 19 Harrisburg
January 20
Wilkes Barre
January 21 Scranton
Schedules for Reading and Altoona were not fixed when this issue was made up.

The lectures are to be delivered by Mort Bernstein, Associate Editor of Radio-Electronics, a radio engineer and professional television instructor as well as a radio-television editor.

## CHICAGO MOVES TO LICENSE

The Chicago City Council has requested the Illinois State Legislature to amend the Cities and Villages Act to permit the city of Chicago to license radio and television service technicians. The request, made at the end of October, cannot be acted upon until the Legislature meets this month (January), and could not be enacted into law until July 1.

If approved, the city will then hold the necessary hearings to determine what type of licensing, if any, is desirable, and how a license law should be enacted and enforced.

Sponsors of municipal licensing in Chicago include Frank Moch, president of the Television Installation Service Association, and E. T. Wood, business manager of Local 1639, International Brotherhood of Electrical Workers, a

RADIO.ELECTRONICS
local of 700 television repairmen. Opposing it was Norman Brahmstedt, of the National Appliance and Radio-TV Dealers Association, who reported that his association would make a formal statement of its views at a later date, probably before the State Legislature.

## BBB KNOCKS \$1 CALLS

The Better Business Bureau of New York City-in a special bulletin issued late last October-urged that advertising of specific prices for TV service be discontinued. The bulletin stated that the Bureau has been increasingly concerned with "apparently flat-rate lowprice offers, such as ' $\$ 1$ per call plus parts'" and that complaints about such service are increasing.
The Bureau recommended that in advertisements of television service:

1. No prices should be mentioned.
2. "Free estimate" offers should not be used.
3. "Guarantees" should be specific as to duration and actual terms.

## frSAP TO PRESENT PLAQUE

The Pennsylvania Federation will present its plaque-awarded annually to the person or organization who has done most for the benefit of radio service technicians during the yearat Harrisburg on January 18.

Last year's plaque was awarded to John Rider, long-time champion of the service technician and publisher of servicing aids.

## TV GYP CHARGE HOLDS TWO

Charges of larceny have been preferred against two television service technicians whose firm levied a charge of $\$ 34.13$ for "repairing" a set whose only fault was a bad tube. The men were employed by Sibko Television Service Corporations, of Queens, one of the boroughs of New York City. It is said to be one of the largest " $\$ 1.00$ plus parts" concerns in that area.

The set was a "planted" one, with all parts marked invisibly, and one dead tube. The receiver was removed to the shop because "the high-voltege circuit was out" and allegedly returned later with a bill for $\$ 34.13$, which itemized a new flyback transformer, a capacitor, and two resistors. All the supposedly replaced parts still had their original code markings, however. A warrant was issued for the man who removed the set from the house and for the bench man who gave the estimate for replacing the non-replaced parts. END


TRAIN At Fiome FOR OPPORTUNITIES IN

## Set Your Own Pace with This Practical Program!

Get in on the ground floor of this fast-growing field. Train now to cash in on the opportunities that are yours in UHFTV SERVICING with proven, practical T.C.I. training. Here is non-mathematical training that's complete . . . down-tocases ... up-to-the-minute. Here is training you take in your spare time, without leaving your present job! Think of itin your own home you learn TV set conversion, master antenna installation, the latest in UHF-TV, money-making short cuts and much more. You learn to troubleshoot, test and repair TV sets the only practical way-by actually doing this work yourself!
Here's How You Learn By Doing! You get the experience you need by working on a large screen, modern TV receiver that's given to you with the course and is yours to keep. As an optional feature you get two weeks of field experience on service calls and on the repair bench with one of Chicago's largest independent TV servicing organizations. You profit from the experience and know-how of men in the field. Not through books alone but by actually doing the work yourself, you get the knowledge you need to qualify for opportunities in UHF-TV SERVICING! Age is na barrier. Many T.C.I. students are over 40! Mail Coupon for full facts, FREE Catalog and SAMPLE LESSON. Act NOW!


## TELEVISION COMMUNICATIONS <br> INSTITUTE

205 WEST WACKER DR., DEPT. RE-13, CHICAGO 6, ILL.
VETERANS
dischorged
since June 27, 1950 are eligible for G. I. benefits. Check
coupom.

## MAIL NOW FOR FREE BOOKLET

TELEVISION COMMUNICATIONS INSTITUTE
205 W. Wacker Dr., Depł. RE-13, Chicago 6, III,
YES! Rush full facts on UHF-TV training, Include FREE Catalog and Sample Lesson. I am nat obligated. Salesman will not

Veterans
Check here

Zone... State.
$\square$ BEGINNERS: Check here for information on Pre-TV Radio



## PEN-OSCIL-LITE

Extremely conventent test osclllator for all radio powered - Hange from 700 cycles audio to over 600 meganycles u.h.f. Output from zero to 125 \%. Low in cost : Used by Signal Corps
GENERAL TEST EQUIPMENT 38 Argyle Ave. Buffalo 9, N. Y.

## OPEN WIRE LINE <br> $\$ 995$ postpaid in u.s.a. Per 100 Feet

100, 150, 200, 250 Ff. REELS

- Extremely Low Loss
- Polystyrene Spacers 6" Apart
- No. I8 Copperweld Wire
- Ideal for Fringe Areas
- Very Finest Quality
- Immediafe Delivery Via P.P.
R. J. BUCHAN CO.

Box 9
BRICELYN, MINN.



*OPEN WEDNESDAYS UNTIL 9 O'CLOCK *

## CONCORD RADIO.

54-L Vesey Street. N. Y. 7, Dept. C-1
Please include my name on your special bar gain mailing list. Free of charge.

Nome
Address
City
in these new batteries measures only 0.9 inch in diameter and 0.23 inch high. The positive electrode can, the positive and negative electrodes, and the electrolyte pad are sandwiched together inside a protective plastic ring between two "bottle caps" which serve as positive and negative terminals.


Schematic view of the new B-battery.
The cells, which use zinc for the negative pole and manganese dioxide for the positive pole, and an alkaline electrolyte, are stacked together in paper tubes. The number of cells which go into a


Battery complement of a new portable. Playing time is enormously increased.
battery depends on its voltage and current ratings. The completed battery is enclosed in a steel shell which resists swelling and prevents it from wedging in the radio.

END

## ELECTRONIC POSTMAN?

Electronic mail-sorting devices and supervisory TV systems are to be installed in Canadian Post Offices. The average human handler can reach only about 60 pigeonholes in sorting mail. Pushbutton electronic selectors will enable each man to reach 300 slots and eliminate multiple handling. Closed circuit TV installations will permit postal inspectors to watch operations anywhere from a central point, instead of from the peephole galleries now used.



He doesn't gamble with mediocre transformers, he installs the choice of leading set manufacturers-Utah. Don't hazard your reputation with unproven parts, specify 'Utah'. Transformers and be sure of a ¡ob well done.
POWER TRANSFORMERS VERTICAL OUTPUT TRANSFORMERS FILTER CHOKES VERTICAL BLOCKING OSCILLATORS - AUDIO OUTPUTS


WRITE TODAY FOR Complete TRANSFORMER INFORMATION, UTAH TRANSFORMER DIVISION, CATALOG T-100


## SPECTACLE-TYPE HEARING AID

Patent No. 2.613,282

Alan M. Scaife, Pittsburgh, Pa.
Some hard-of-hearing persons object to wear ing a hearing aid because it is conspicuous. 'This invention hides the hearing aid within a pair of All components are located within spectacles. All Wo externgl wiring is the fyamics or the britge. No exter nal winine is needed. The microphone is located in the bridge, so that maximum sound is picked up when the person turns his head toward the speaker. The device and its circuit are shown below


Assembly and circuit of hearing aid.
The amplifier is huilt into the left-hand bow of the spectacles as shown. It uses 3 transistors. transformer coupled. Reproducer $R$ may be of the bone conduction type. It presses against the bone just bick of the ear. A tiny volume control bone thother with a is also inclunca the ring type switch which is operated by the fingers. The right-hand frame carries three batteries. A supplies 1.5 volts to energize the carbon microphone $M$. It also biases the emitter of the first transistor, 'T1. The battery $B$ provides a voltage of 3 volts to bias the emitters of the other transistors, T '2, $\mathrm{T} 3 . \mathrm{C}$ is a 30 -volt battery for the collectors.

## TV MARKER GENERATOR

Patent No. 2,610,228
George F. Devine, Marcellus, N. Y. (assigned to General Electric Co.)
This invention reduces the nunber of crystals needed for correct TV alignment. It uses one crystal to mark the fesired picture carrier (i.f. or r.f.). A second crystal provides markers at 1.5 -me intervals on either side of the pix cartier. Thus it automatically indicates the adjacent sound Thus it autonaticaly nonying sound carrier. Also, the third harmonic of the 1.5 -mc crystal may be used to align intercarrier sound stages.
A sweep generator is connected as usual to the TV under test and to the sync terminal of an oscilloscope. The $1.5-\mathrm{me}$ oscillator provides a fundamental and harmonic frequencies which mix with the desired picture carrier signal. The latter may be i.f. or any r.f. channel. Due to modulation, the detector output contains a large
pip which indicates the picture carrier and smaller pips at intervals of 1.5 mc .

These pips identify picture and sound carriers for correct alignment. The third harmonic of the $1.5-\mathrm{me}$ crystal is used to align intercarrier sound.

## VOLTAGE LEVEL SELECTOR

## Potent No. 2,612,550

Gearge T. Jacobi, Schenectody, N. Y. (ossigned to General Electric Co.) This is a high-speed switch useful in quantizers and oscillograph recorders. It indicates signal amplitude by steps. For example, when the amplitude lies between 0-1 unit, it energizes the "No. 1" circuit. For a level between 1-2 units. "No. 2" circuit is energized, and so on. This indication by steps is called quantizing.
See Fig. a. B1 and B2, are 6-v. supplies. All divider resistors are equal, to provide the voltages shown. The upper values are given with respect to point A, the lower ones relative to $B$. With zero signal at T, these values are also correct with respect to ground.
Note the 5 pairs of rectifiers, X1Y1, X2Y2. If a rectifier passes current, it feeds one of the load resistors R1, R2.... Current through any load can flow in only one direction. In this circuit only one rectifier pair can remain non-conducting at any time. For example, assume zero signal at T. Then X3Y3 is the only non-conducting pair since these have no voltage across them. Line 3 is grounded but all others are negative.

Now assume an input signal. Let A be 2 volts positive and B 2 volts negative. Now the original voltages (marked on the diagram) are changed. The upper values are increased 2 volts, the lower values decreased 2 volts. Therefore X1Y1, with no voltage across them, are non-conducting. All other $Y$ rectifiers are blocked, but the other $X$ rectifiers have negative cathodes so they conduct. Now Line 1 is at ground potential, but all others are negative. In this way, only one line is at ground potential at any time.
Fig. $b$ shows how the level selector may be connected to a bank of triodes. At any time, only one tube has its grid grounded. All other tubes are blocked by the negative bias on their grids. The tubes may feed an oscillograph. END
$\qquad$
$a$



## 

13 Tubes give you features and power to spare. $\$ 0750$
FM tuning range $88-108$ megacyeles. AM tuning range $535-1650$ kc. 14 Watt $6 V 6$ Push-Pull Amplifier. Added RF Tube on FM. Separate in. List $\$ 139.50$ put jacks for erystal and reluctance piekups. Will accommodate two speakers (i.e. $1-12^{\prime \prime} \& 1-5^{\prime \prime}$ for very high notes-Extra \$2). Its wide range, $\mathbf{3 0 - 1 5 , 0 0 0}$ cycles, has an excellent Tone Control System using separate Bass and Treble tone controls. Tuner and Amphifer on one chassis makes installation very easy. Phono Motor outet proviled complemppression. to PLUG-IN including all tubes with a


High Quality Speaker. Multicolored slide rute dia A M Loop An $123 / 4 \times 101 / 2 \times 73 / 4$ 10r
Factory Cartons. lmmediate High. RCA Licensed. New Merchandise. Original

COMPLETE RADIO-PHONO CONSOLE COMBINATION
$\$ 16950$ With Webster Changer \& G.E. Variable leluctance Pickup. In Mahogany
Finish. ( $\$ 10$ additional for blond.) 222 FULTON ST. N. Y. 7.

Order Yours
day by Mail
or day by Mail or
Come in for a Free Come in for a Free \$10.00 on C.O.D. $\$ 10.00$
Orders.

## teamed together for Bextevi TV Pictuna Qualitiy



The test patterns on both high and low bands reveal the Amphenol Inline Antenna's superior uni-directional reception lobe. This single forward lobe intercepts the TV signal at its maximum available strength. It also rejects unwanted reflected signals or side interference that cause "ghosts" and unsteady pictures.

No other broadbanded antenna can present as favorable a reception pattern on all the VHF channels as does the Amphenol Inline Antenna.

TAPE RECORDER Allied Rodio Corp., 833 W. Jackson low-priced tope ecorder, the Knight. head provide four recording recording At 3.75 inches per second a 7 -inch cords continuously for one hour (twa hours using secone half of tape width) At the fost speed of 7.5 inches per our continuously and one hour over


Frequency response is flat from $90-6000$ c.p.s. at 2.5 inches speed and Recordings may be made either from the microphone supplied, or direct Playback is through the built-in ampliier and $5 \times 7$-inch oval speaker The unit weighs less than 22 pounds
and operates on any $105-120$-volt, 60 -

DYNAMIC MIKE


The front-to-book pickup differential rovided: 50, 200, 500 ohms and high mpedance. Output level of the high - 54 db (I valt per microbar). mike 40 to 10,000 eycles. Standard equipe ment includes Amphenol cable con-

## C-R TUBE ANALYZER

## Chion Electricol Intur

 is producing a new cothode-ray tub analyzer, model 707. It tests all

trostatic deflected types. It also will special-purposeope,

## PORTABLE RECORDER

Amplifier Corp. of Americo, 398 Broad way, New York 13, N. Y., is manufactur ecorder with spring-wound motor, the Broadcaster model 610-SD. inches deep $x ~ 71 / 2$-inches high, and weighs 15 pounds. The flutter content $s$ within $\pm 0.1 \%$ over the full winding tape speed of $71 / 2$ inches per second, urnishing 15 minutes of playing time on a standard 5 -inch diameter 600 -foot reel of sound recording tope. Record ings may be played back on any a.c.
operated studio equipment at equivaoperated studio equipment at equivapeed control provides $+5 \%$ tape eed adjustment.


Recordings can be made while the instrument is in motion or being car red. Headphone monitoring while through phones, or into an playback amplifier, speaker, or telephone trans mission lines are two features of the he high-impudance microphone input and output terminals.

## WILLIAMSON AMPLIFIER

British Radio Electronics, I Thomas Circle, Washington 5, D.C. , has announced that it is importing the first productio
version of the Williamson omplifier to be endorsed by the designer.


The amplifier is suoplied with special y wound transformers and chokes and with capacitors of approved British units, and weighs 47 pounds. Metering and balancing arrange ments are provided. Jacks and plugs have been supplied from the U.S. to replacement parts are available in this

## TV CALCULATOR

Pioneer Electronic Supply Co., 211 Prospect Ave., Cleveland 15, Ohio, has
announced a television signol-range

alculator. Designed as a slide rule shows the approximate Grade A
Grade $B$, and City coverage for all

SERVICE AIDS
General Cement Mig. Co., Rockford Al., has announced two new service chemicals, one for TV ond radio re-

## BUILD 15 RADIOS <br> ONLY AT HOME \$1995

With the New Improved 1953 Progressive Radio "EDU-KIT"

NOW INCLUDES SIGNAL TRACER and CODE OSCILLATOR

- FREE TOOLS WITH KIT
- ABSOLUTELY NO KNOWL. EDGE OF RADIO NECESSARY
- NO ADDITIONAL PARTS NEEDED
- EXCELLENT BACKGROUND FOR TELEVISION
- 10 DAY money-back guarantee

WHAT THE PROGRESSIVE RADIO 'EDU-KIT" OFFERS YOU
The Progressive Radio "Edu-Kit" otfers you a home study course at a rock
bottom price. Our Kit is designed to train Radio Technicians, with the basic facts
 galn a knowledge of basic Radio Principles involved in Radio Reception, Radio
Transmission and Autio Amplification.
You whll learn how to identify Radio Symbols and Diagrams; how to build radios, using regular radio circult schematics; how to mount various radio parts; Receivers, Transmitters, and Audio Amplifiers. You wuy Wlearn how to to operate
trouble-stioot radios. You will learn code, You will receive training for fand license.. brief, you will receive a basic education in Radio exactiy like the kind you

## THE KIT FOR EVERYONE

Who has a desire to learn Radiu-Kit Was specifically prepared for any person
and old in al pats of the worid. 1t is not been used suecessfuly by young
in lightest background in science. n this country and abrad "EEdu-Kit" is used by many Radio Schools and Clubs
tional Guidance and Training. is used by the Veterans Administration for Vocaare included. All parts Rare indiEdu-kit" requires no instructor. All instructions
and
diagram. Every

## PROGRESSIVE TEACHING METHOD



The Progressive Radio "EDU-KIT" Is Complete
 so that you can easily identify included. The up warts solder, etc. lectrical and fadio Tester. Complete, easy-to-follow insercluded, as well as an Progressive Signal tracedu-kit", now contains lessons for servicing wrovided

## TROUBLE-SHOOTING LESSONS

## and repair troubles. You will buld and learn to operate be taught to recognize

 repairs. While you are learning in this practical way, you will be able tadio far exceed the cost of the "Edu-Kit". Here is your poportune fy to learn willquickly and easily, and have others pay for it. Our Consultation service will
help you with any

FREE EXTRAS IN 1953

- ELECTRICAL AND RADIO TESTER
- ELECTRIC SOLDERING IRON
- BOOK ON TELEVISION
- RADIO TROUBLE-SHOOTING GUIDE
- MEMBERSHIP IN RADIO-TELEVISION CLUB
- CONSULTATION SERVICE
- QUIZZES

TRAINING FOR F.C.C. LICENSE
The Progressive Radio "Edu-Kit" is sold with a 10-day money-back guarantee. Order your Progressive Radio "EDU-KIT" Today, or send for further intormation.

## Cust weid 630-DX GIASSIS terrific savings-immediate delivery

Includes newest developments-Cascode Tuner-30 Tubes-For 16 to 24" Picture Tube-Wonderful Saving! Adaptable for color \& UHF!
 The great 630 with all the up-to-date improvements! Wonderful reception on long range up to 200 miles, without a booster, is yours today at this ow-low price. Gives 3-times normal eception. Special super high-gain standard coil tuner gives greater sensitivity, top performance on any channel. Aligned and tested for 5 hours, molded condensers, 4 microvolts sensitivity, FM sound system horizontal \& linear lock and is directly adaptable for color \& UHF

Model 630 DX- $1: ~ R M A ~$
Guaranteed- Factory Guaranteed Factory
Wired, ready to play. Complete with 12
speaker, hardware and speaker,
knobs.
.50 (less
CH T)

FREE: New Trouble Shooting book with any chass/sl SUPER 630 DX-2 TV CHASSIS neludes the same features as the 630 chassis olus the following:
Keyed AGC level control \$ 4.5 Megacycle wave trap to eliminate

* Phono input \&
- Phono input \& switch which cuts out high
voltage supply
* RCA matched $70^{\circ}$ cosino yoke \& Hi-Voltage
transformer
Four (4) 6CB6 tubes
- RCA $12^{\prime \prime}$ PM Speaker
video if stip

59.50

Universal Mounting Brackets ..... $\$ 5.95$
For 17", 20"\& 21 " Picture Tubes Chassis.
Every beautiful cab. inet is richly finished hogany and made by ur own cabinetmakers. They aro custam styled, guaranteed new $\&$
mas k \& $\&$ moct. Includes
monting mask \& mounting
brackets. Cabinets are also available with blank control panel to fit
$549^{50}$
Model 200: Original
list $\$ 99.95$
Blonde finish, add $\$ 10$
Also Deluxe Cabinets, write for catalog TV PICTURE TUBES

## 都

## SUPER DELUXE 630-DX•3

 CHASS IS with Push-Pull Audio OutputIncludes same features as 630 DX-2 chassis, plus the following:
$\qquad$
Frequency response from
$80-15,000$ cycles at $\pm 1.5 \mathrm{db}$
Tapped for 4 \& 8 ahm * Tapped for A A A ohm spakers

* High quality RCA $\mathbf{1 2}$ " PM
speaker $\mathbf{S C O P 1} \begin{gathered}\text { Net price } \\ \text { Complete }\end{gathered} \$ \mathbf{1 6 9 . 5 0}$ SCOOP! AM Radio tuner, made
especially for ant 630 or 630 especially for anv 630 or 630
DX Chassis. Complete, ready to
install, fits in the woll of TV install, fts in the wbll of TV
chassis.
Rose $\$ 14.95 \mathrm{ea}$.



## SPEAKERS

New Low Prices! All Alnico V

$\qquad$

$\qquad$ PM ohm touble
trans. duty
 ohm 2.75
2.75 2" 2.500 ohm. Adied Divientis! 3.95
DEDUCT $10 c$ Prom the price of any speaker in lots of to or more
nay be assorted.

 \begin{tabular}{lllllll}
$10 B P 4$ \& $\$ 19.95$ \& $16 A P 44$ \& $\$ 32.95$ \& $20 C P 4 A$ \& $\$ 35.95$ <br>
\hline

 

2LP4A \& 22.95 \& $16 \mathrm{GP4} 4$ \& 32.95 \& 21EP4A \& 36.95 <br>
\hline 16 KP 4 \& 26.95 \& $24 A P 4$ \& 68.95

 

$4 B P 4$ \& 23.95 \& $178 P 4 A$ \& 23.95 \& $24 A P 4$ \& 68.95 <br>
\hline 4 CP 4 \& 23.95 \& $19 A P 4 A$ \& 39.95 \& $27 E P 4$ \& 92.95
\end{tabular} \(\begin{aligned} \& 14CP4 <br>

\& Order now for imniediate delivery.\end{aligned} \quad\)| 23.95 | 19AP4A |  |
| :--- | :--- | :--- | Rose Co.'s Rose Co.s

ANTENNA KIT
Saves you many dollars! New antenna, hits contain you mony dollars!
for a conthg needed fnr a complete, satisfactory installatiun. NOW
is the time to replace those old rusty worn
out antennas whith these trand new aluminum out antennas whih these hrand new aluminum
johs. Be ready for the millions of dollars of
 show because of poor re
No. K-21 KIT includes:
$1-8$ element conical antenne elenent conical
75 ft. htghest quality
300 ohm wire

$\qquad$ tors sta 4 sulators screw eve standoffs 1 all-angle base mount

Savel

| Dealer |
| :--- |
| Net: |
| Complete | kit

Terrific
Buy
Dealer
Nef:
Complete Kit

Brand New, Standard Brands, Fully Guaranteed, Individu ${ }^{\text {ally }} \times 2 \mathrm{~b}$ boxed


CONVERT YOUROLDTVSET TO
TUBE
Comple
Comp
complete conversion kit to maten
your set! Wonderful new kit
comes complete with all parts comes complete with all parts
and diagrams necessary 10 easily
convert any set to larger tube convert any set
70. Kit includes: Cosine yoke
Matehedhi-vole
$\qquad$ Nidth coll condenser
20,000 V,
it of resistors

Dealer $\$ 9.85$ \begin{tabular}{l}
Complete kit <br>
Be sure to senu model make \&odel <br>
of your set for matching con- <br>
version kit. <br>
\hline Write for catalog!

 Genuine MOLDED CONDENSERS Fresh Stock! All mineral oil filled - Fully molded - 100 Centigrade - Meets Jan. C91 tests GUARANTEED All 600 Volts Cap. per 10 per 100 Cap. per 10 per $100 \mid$ Cap. ner 10 per 100 

001 \& $\$ .79$ \& $\$ 6.90$ \& .005 \& $\$ .79$ \& $\$ 6.90$ \& .05 \& $\$ 89$ \& 7.90 <br>
\hline
\end{tabular} MERIMUM 28 .

OER: $\$ 5.00 .25 \%$
deposit with deposit with orc.0.D. Include
cost postage with or-
der. All merchan-
disi der. All merchan-
dise
prior sale, F.o. to prior sale, F.O.B
New York
Prices subject Prices subject to
change without
notice

De.Noiz, for radio and TV controls uch as volume controls, detents, tuners,

corrosion and oxidation and stops Moise. Ma -netic Head Cleaner, applied to recording heads of tape and wire recorders where it aids in preventing the other residue.
Both products come in 2 -ounce sealed

## NEW TRANSFORMER

Sonder-Tongue Labs, 526 North Ave.. ohm matching transformer, model MT-I. The unit provides a 2 -times increase in signal valtage and signal-

o-noise ratio when transforming from 75 to 300 ohms. It is built into a small metal case, which may be mounted of the antenna.

## AUTOBOOSTER

Perma-Power Co., 4721 North Damon Ave., Chicago 25, 11., is producing, a creases picture tube filament voltage

o 7.8 volts. The unit is designed for use in sets with paralle-wired and nents. The C-Brite is outomatic and

## RADIO KITS

 Radio Kits Inc., 120 Cedar Street, New "Qork, N. Y. has announced the pletely assembled form. Model QS is
a l-band receiver or kit with a fre quency range of $550-1600 \mathrm{kc}$; mode Q5X is a 2 -band receiver or kif with fre-

## SOLDERING IRON

American Electrical Heater Co.. 6110 Cass Avenue, Detroit 2, Mich., is pra

ducing an angle type electric soldering ron for light-duty soldering. The iron weighs 10 ounces, has a $1 / 4$-inch plug available in standard voltages and for 32 volts. A separate heat-insulating

## TUBE REJUVENATOR

Crest Laboratories Whitehall BIdg
Far Rockaway, N. Y., has introduced a

new picture-tube rejuvenator, the model Di, designed to operate with all series-

## V.H.F. ANTENNA

Davis Electronics, 4313 W. Magnolia Blvd. Burbank, Calif., has announced an all channel (2-13) high-gain v.h.f. antenna the super iston. Manufac. ghosts, 10 db or more gain on high

channels, good front-to-back ratio on tipped to shift the vertical pattern without tilting mast and can be used with antenna rotator. It is 6 feet 2 inches high (less mast), 8 feet wide. and 4 feet deep.

## MULTIPLIER PROBE

Insuline Corporation of America, 3602 35th Ave., Long Island City 1. N. Y., has announced a multiplier probe that extends the d.c. voltage ranges af standard vacuum-tube voltmeters 100



If the meter has a normal top range of 300 volts, it reads up to 30,000 volts with the probe; if it has a range of 500 The insulated handle has a finger guard. The probe is $81 / 2$ inches long and has a 5 -foot flexible cord and accom panying grounding wire. The meter end of the cord has a microphone-type screw-on connector. An adapter plug (No. 33) permits the use of the probe with meters hoving phone plug connec

## MOBILE CONVERTERS

Radio Manufacturing Engineers, Divi sion of Electro-Voice, Peoria 6, Ill., has amours. Model MC- 55 is a five-band


## PICTURE-TUBE BRIGHTENER

Standard Tronsformer Corp., 3580 Elston Ave., Chicago 18, III, is producing the Stoncor P-8192 C-R tube booster, a compact, self-contained device designed to add months to the the unit can be television picture tube. the unit can be used with all electro: nogneric picture ubes, regardless of cathode emission.
Easy to instio
Easy to install, the new booster meas. ures only $31 / 2$ inches high ond $11 / 2$ o.c. line connection, and is equipped with high-low switch providing two levels of brilliance. Of autoformer con-
truction, it has leineh leods between
the booster and the connector plug, allowing the unit to be placed anywhere in the set, ond is supplied with

net mounting. To install, it is neces nector and to rem nector and attach it to the booster booster to the tube. If there is suticient brilliance at "low" it is neces
sary only to flip the switch to ".hhigh.

## U.H.F. ANTENNAS

Technical Appliance Corp., Sherburne, N. Y., has two new antennas. The u.h.f ontenna Catalogue No. 3008, known as the Bow-Tie, is a stacked 4-element anterna for maximum gain. The four elements are preassembled to a 4 -foot mast section complete with Q-bars standoff insulators, and fitting an additionol 4 -foot section of mast included - provide clearance above the roof. The Bow-Low consists of o Bow-Tie antenno with on ultra-efficient all. on an 8 -foot mast

## NEW CARTRIDGES

 Generol Electric, Electronics Pork new 15,000 -evele phonograph cartridges to their Golden Treasure line. These ore dual-stylus RPX 053. RPX 061 and RPX 063, the latter two single-stylus cartridges. All three feature retractable diamond
## TUBE TESTER

Anko Monufacturing Co.; $731!$ West Burleigh St.. Milwaukee 10, Wis., has
announced a new tube tester, the Tele. test, which reduces testing time on most receivers by eliminating switching and set-ufs. One meter, with a single scale, indicates "good" and "bad"tube conditions. Picture tubes can be tested through a single adapter cord and plug while in the receiver


HI-FI FM-AM TUNER
Ravenswood Craftsmen,
Ravenswood, Chicago, IIl, have $N$ C800 production of the new model custom figh fidelity FM.AM funer for trols include equalization for AES conor European recording chara AES, LP a.f.c. on-off switch characteristics and continuously variable bass ing, treble controls from 15 dble bass and 15 db attenuation with flat position clearly marked. Also featured is a double shadow funing eye.


The C800 has a total complement of 5 tubes and con be mounted in the C 10 tuner.

## TUBULAR CAPACITORS

Industrial Condenser Corp., 3243 N . Califarnia Ave., Chicaga 18, III., has announced a complete line of singleAdded to the line are an $8-\mu 4$ and a dual 4 -uf 600 -volt are an $8-\mu$ and a 4.uf 1,000 -volt d.c. unit capacitor, a d.c. unit, and similar


Known as the $G$ and $H$ types, they are oil-impregnated and filled with Indco oil "A". Pyroteen-filled capacitors are also available. Standard tapacifance tolerance: $+20 \%$ to - $10 \%$. Temperature range: Indco ail - 40 degrees to +70 degrees $C$.: Power factor: Indco oil, $0.4 \%$ pyroteen. $0.2 \%$.
Catalog and further information available from manufacturer. ENN

## New RADIO COURSE only $\mathbf{\$ 2 5 0}$ <br> MADE MONEY FIRST WEEK

 You should get more money or your Course. The first week I studied it, I mude $\$ 10.00$ re pairing sets. I built my own test outfit from details given in this course. I have repaired 100 radios © date.
Signed: Robert C. Hammel 120 W. 13th. Davenport, Iowa

COMPLETED IN 8 WEEKS I am very satiafied with the course. When I was at the twelfth lesson I started repairing radios. It took me two months to master your course." From a letter Pritten by Roper Lanolois, 1679 Poupart St., Montreal, Canada.

MODERN, UP-TO-DATE "Your course is modern and up-to-date. There is not one page in the whole course which anyone can aftord to miss. Your course paid job and has repaid me many tirnes." Charles Alspach, 433 Elm St., Reading, Pa.

## AMAZING BARGAIN OFFER

Here is a practical home-study course that will teach you how to repair all radio sets faster and better. These newly reprinted 22 lessons cover all topics just like other correspondence courses selling for over $\$ 150.00$. Our amazing offer permits you to obtain the course complete for only $\$ 2.50$, nothing else to pay. Easy-to-follow, well illustrated sections on test equipment, circuit tracing, alignment, F.M., use of oscilloscope, amplifiers, and every other topic needed to be an expert in radio repairing. Trouble-shooting hints, circuits, short cuts, service suggestions, new developments. Send coupon today, and use the complete course at our risk. Satisfaction guaranteed. All 22 lessons, in large manual form, + self-testing questions, \$\$50 complete, your cost only

## INTRODUCTION TO TELEVISION

These practical lessons making up this course-book are easy to follow and apply to actual radio jobs. Use this training to get ahead in radio and as an introduction to television. Hundreds of radio facts that puzzled you will be quickly cleared up. You will find yourself doing radio repairs in minutes instead of hours - quickly finding faults or making needed adjustments. Every new radio development of importance and thousands of time-saving radio facts are packed into this complete course-manual. For example, there is a large lesson on servicing F.M. sets and another full lesson on audio amplifiers. Use coupon below to order Course for 10-day examination in your own home. Look over the material, read a few lessons, apply some of the hints. Then decide to keep the lessons at the bargain price of $\$ 2.50$ (full price), or return the material and get a cash refund. loffer mas be wothdrawn at any time.)

Supreme Radio \& TV Manuals Your complete source of all needed Raplo and TV diagranis and service data. Most amazing values. Stlll sold at pre-Korean prices. Only $\$ 2$ for most volumes. Every Radio manual contalns large schematies, all needed aligninent facts, parts lists, voltage values, trinmiors, dial string practical service hints. Each TV manual is with giant blueprints, patterns the year's sets charis, sursested changex s, waverorms, himes, for a complete list of these low-priced manuals.

## Supreme Publications

Sold by All Leading Radio Jobbers

## NO-RISK TRIAL ORDER COUPON

## SUPREME PUBLICATIONS, 3727 W. 13th St., Chicago 23, ILL

Radio Dlagram Manuals


Send Radlo and TV manuals checked $x$ at left and

[^12]Complete RADIO COURSE (22
1952 Television Manurl, $\$ 3$. 1948 TV, \$3. 1947 TV 1949 TV, \$3.
$\square$ I am enclosing \$.
Send C.O.D. I am enclowing $\$$ post pald

## SHORT-WAVE PRESELECTOR

A good r.f. preselector can be used with any type of receiver from the simplest blooper to the deluxe superhet to pull those weak dx signals up out of the noise. A two-stage preselector covering from 200 to 10 meters was described by I1AHR in Rassegna di Radiotecnica (Ravenna, Italy).

A pair of 1851 pentodes were used in the original model, but you will probsibly get better results with a 6AC7. The latter is electrically identical to the 1851 with a redesigned grid
structure for improved high-frequency performance. Gain is controlled by varying the $5,000-\mathrm{hm}$ resistor in series with the cathodes of the tubes. Selectivity is varied by tuning the $100-\mu \mu f$ capacitor across L2.

The coils are wound on standard $11 / 4$ inch plug-in forms. The antenna coils are on 6-prong forms. Four-prong forms are recommended for the r.f. (interstage) coils to insure that the coils are plugged in to the correct sockets.

Winding data is given in the table. On the antenna coils, L2 is interwound with L3, and L1 is spaced below the

meters. L4 is interwound with the ground end of L5. If the $140-\mu \mu \mathrm{f}$ tuning capacitors are ganged (they should be for easy tuning), L3 and L5 should have exactly the same number of turns and the same winding length. The antenna and r.f. coils should be shielded, and the sections of the $140-\mu \mu \mathrm{f}$ bandset and $35-\mu \mu f$ bandspread capacitors should be separated by a partition shield to prevent oscillations.

## TVI REDUCTION KINK

Most articles on amateur TVI elimination stress the need for very low harmonic output and the elimination of v.h.f. parasitics in the transmitter. Various types of high-pass filters, harmonic traps, and parasitic suppressors have been described. Writing in The Radio Amateur, G5JU, a British ham, described a simple device for reducing harmonic output, eliminating parasitics, and increasing the radiation for heat from transmitting tubes.
The device consists of a length of $1 / 2$-inch wide copper or brass strip cut to the approximate shape shown at $a$, and then bent to shape and bolted to the cap of the tube as shown in drawings $b$ and $c$. The $21 / 4 \times 1 / 2$-inch "plate" is located close to and parallel with the metal shield separating the power amplifier from the driver and other portions of the transmitter. The plate and interstage shield form a small capacitor between the tube plate (anode) and ground. This capacitor bypasses high-order harmonics which may be generated in the tank circuit or fed into the tube via the grid. The inductance of the capacitor lead is exceptionally small, thus minimizing the possibility that the inductance and capacitance of the unit may form a resonant circuit which will accentuate harmonics rather than suppress them.

The effectiveness of the capacitor depends on the area of its plate and the distance between the plate and the grounded shield. When constructed as shown, its capacitance is large enough to bypass harmonics and suppress parasitics without causing any appreciable reduction in the $L-C$ ratio of the plate tank circuit at frequencies be-


AUTHORIZED DISTRIBUTOR


## Presents the NEM

## RCA W0-88A OSCILLOSCOPE

## THE 5-INCH SCOPE WITH TRUE SQUARE WAVE RESPONSE



Unrefouched phofographs of 60 cycle and 50 Ke square waves reproduced on screens of WO-88A. Note fast return.
A rugged scope of high stability, the WO-88A is ideally suited for general TV servicing as well as production-line applications. The outstanding feature of the WO-88A is its remarkably true square wave response. Other features include:

> Direct-coupled, push-pull, 2 stage vertical amplifier; push-pull harizantal amplifier.
> - Frequency-campensated, and voltage-calibrated attenuatars.
> - Frant panel source of I-volt peak-to-peak calibrating voltages.
> - Graph screen scaled directly in peak-to-peak voltages.
> - Magnetic-shielded CRT gun to minimize hum pickup.
> - Extra-fast sweep oscillator retrace.
> - Built-in 60 -cycle sweep with phasing control.

Used with the new low capacitance WG-216B probe, the input resistance is 10 megohms, shunted by less than 10 mmfd . The frequency response of the vertical amplifier is flat from dc to 100 Kc ; within -3 db at 500 Kc ; and within -10 db at 1 Mc . Sweep circuit frequency is provided in four ranges, from 15 cycles to 30 Kc . Deflection sensitivity of the vertical amplifier is 25 rms volts per inch. Operates from $105 / 125$ volt, 50/60 a.c.

Dimensions: $131 / 2^{\prime \prime}$ high, $9^{\prime \prime}$ wide, and $16 \frac{1}{2} 2^{\prime \prime}$ deep. Weighs 25 pounds.
Complete with Matched $\$ 15950$
Probes, Cables, and Tubes

NOTE: Prices Net, F.O.B., N.Y.C.
Subiect to change withoul notice.


C

## DIAMOND NEEDLES

Our main business is the manufacture of diamond styli for broadcasting stations and high fidelity sound equipment. As a service to the general public we offer to retip your preseat regeneral public we offer to retip your preseat re-
placeable needle with a genuine, unconditionally guaranteed broadcast quality diamond tip for either LP of Standard records.
Send us your replaceable needle (or complete Send us your replaceable needle (or complete
cartidge except Pickering) together with chech cartridge except Pickering together with chech
or money order for $\$ 10.50$ plus $25 \phi$ for shipping.

THE TRANSCRIBER CO. 176 Green Street Dept. R Boston 30, Mass.


HERE IS LATE IMFORMATION IN A HANDY FORM FOR EADIO \& TELEVISION REPAIRMEN, SERVICEMEN \& STUDENTS


## 

 IT PAYS TO KNOW!AUDELS T.V.-RADIO SERVICE IJBRARY DUDER :RADIO SERVICELIBRARY presents the important. subjects of Modern Radio, Television, Industrial Electronics, F.M. Public Address Systems, Auts, Marine Aircraft Radio, Phonograph Pick-Ups, etc. Covers Basic Principles-construction-Installation - Operation - Repairs - Trouble Whooting. Shows How to get Sharp, Clear T.V. Pictures. Install Aerials-How to Test. Explains Color Systems \& Methods of Con-Illustrations-Parts over 1260 Pages Valuable for Quick Ready Reference \& Home Study. Tells How to Solver rells How to Solve T. V. \& Radio Troubles Answers T.V. \& Radio Questions.

Get this Information for Yourself.
7 DAY TEST-ASK TO SEE ITI
-----MAIL ORDER
AUDEL Publishers, 49 W. 23 St. N.Y. 10 An 7 dava iree ivipi.itio


Name
Address
occupation
$\qquad$

## Please Mention Radio-Electronics

 when answering advertisementstween 10 and 20 meters. At 40 meters or lower frequencies, the size of the plate should be increased accordingly.
With an 813 or similar tube running at 2,000 volts or so, the spacing between capacitor plate and shield should be about $1 / 4$ inch. Reduce the spacing proportionately at lower voltages.

## TV LINEARITY CHECKER

Now that many TV stations are televising program material from early morning until late at night, it is becoming increasingly difficult to tune in a test pattern for checking the linearity of TV receiver sweep circuits. A simple circuit for generating a grid of vertical and horizontal bars on a TV screen is described in La Radio-TV Revue (Antwerp, Belgium).
The instrument uses two 6SL7-GT's as multivibrators, a 6SJ7 r.f. oscillator, and à $117 \mathrm{Z3}$-GT rectifier. V1 is the multivibrator which generates the vertical lines. Varying the setting of the 50,000 ,ohm potentiometer in the grid circuit varies the frequency from approximately 20 to 200 kc to produce a maximum of approximately 18 bars. V2 is a

7 through 13 are covered by second harmonics. The suppressor grid is modalated by the signal from the vertical oscillator and the screen grid is modulated by the rectangular-wave output of the horizontal oscillator. The signal is radiated into the input of the receiver by a telescopic whip type antenna or a piece of bus bar 12-20 inches long.

The original r.f. oscillator coil consisted of 8 turns of $10 / 12$ Litz wire spacewound on a $1 / 4$-inch form. Litz wire being difficult to obtain in this country, we recommend a National AR-5 or equivalent coil.

## band-edge Crystal marker

A novel and exceptionally useful circuit for checking the calibration of the tuning dial is built into the ARC-5 and SCR-274-N command transmitters. It consists of a quartz crystal and a turning eye which closes when the v.f.o. is tuned to the same frequency as the crystal.

The band-edge marker or calibrator shown in the diagram is an adaption of this circuit designed to be added to


# ordes geat CUSTOM TV RECEIVERS 



TABLE MODELS
Model T-17 With 17" Picture Tube, Cabinet size: $18^{\prime \prime} \mathrm{H}, 201 / 2^{\prime \prime} \mathrm{W}, 191 / 4^{\prime \prime} \mathrm{D}$. Your Net Cost..... $\$ 169.50$ Model T-20 With $20^{\prime \prime}$ Picture Tube, Cabinet Size:
 $24^{\prime \prime}$ H, $24^{\prime \prime}$ W, 22" D. Your Net Cost......... $\$ 184.50$

## COMPLETELY ASSEMBLED Super Deluxe DX-TV Chassis in TELESOUND CABINET

with Picture Tube and Speaker-Ready to Operate!

## An Outstanding Line of Fine TV Receivers at Amazingly Low Prices!

Famous Make Super Deluxe DX Chassis features Sensationally new Cascode Tuner ESPECIALLY ADAPTED FOR FRINGE AREA RECEPTION! Gracefully prapartioned, smartly styled ribbon stripe mahagany veneer cabinets, with gald picture tube frame.

## CONSOLE MODELS

Model C-17 With 17" Picture Tube, Cabinet Size: 371/2" H 22" W, 191/2" D. Your Net Cost......................... $\$ 189.50$ Model C-20 With 20" Picture Tube, Cabinet Size: $40^{\prime \prime} \mathrm{H}$, $241 / 2^{\prime \prime}$ W, 22 $1 / 2^{\prime \prime}$ D. Your Net Cost....................... $\$ 199.50$ Model C-27 With 21" Picture Tube, Cabinet Size: $40^{\prime \prime} \mathrm{H}$ $241 / 2^{\prime \prime}$ W, 22 $1 / 2^{\prime \prime}$ D. Your Net Cost........ Cabinet Size: $40^{\prime \prime} \mathrm{H}$,


## TeleSSound CUSTOM-BUILT TV CABINETS

## DIRECT FROM MANUFACTURER TO YOU-COMPARE PRICE and QUALITY!

Be price conscious! TELESOUND Wholesale Prices enable you to sell more. make a BETTER PROFIT for yourself!


H:25", D:211/2", W:25" Wot. 50 Lbs TABLE 4-... $=0$ As above, for $\mathrm{H}^{24^{\prime \prime}}$. Picture Tube




H:401/4", D:221/2", W:251/4" Wgt: 60 lbs. MODEL 200
$\$ 47.50$

## FAMOUS MAKE TV PICTURE TUBES ALL STANDARD BRANDS-

 full one vear guaranteeDON'T BE MISLED-DEMAND GUARANTEED STANDARD

BRAND
$121 / 2^{\prime \prime}$ Black or White
$14^{\prime \prime}$ Glass Rect. (Bik) …... $\$ 22.55$
$16^{\prime \prime}$ Glass Round (B|k)
$17^{"}$ Glass Rect. (B|k)
$17^{\prime \prime}$ Gectangular (BIk)
$19^{\prime \prime}$ Round (BIK)
$19^{\prime \prime}$ Round (BIk)
$20^{\prime \prime}$ Rectangular (Bik) 2" Rectangular (Bik)
$21^{\prime \prime}$ Rectangular (Blk) $24^{\prime \prime}$ Metal

Wholesal


Here's the "PACKAGE DEAL" You've Waited for!
$\star$ SAVE MONEY! Order the cabinet of your choice from $\star$ the TeleSound models illustrated, in combination with $\star$ the famous 630 TV Chassis, (Regal or Video), 12" $\star$

> * speaker, and your choice of picture tube. If Video 630DX Deluxe Chassis is desired, add $\$ 10$ to com- $t$

$$
\begin{aligned}
& \star \begin{array}{l}
\text { bination price. For DeLuxe Techmaster 243IP Chassis, } \\
\text { add } \$ 50 \text {. Check these sensationally low prices: }
\end{array}
\end{aligned}
$$


Please include $25 \%$ deposit with orders, balance C.O.D. All shipments F.O.B., NYC 'Designers \& Manufacturers of Custom TV and Radio Furnlture'

421 West 28th Street New York 1, N.Y. New York 1, N.Y.
Phone: WI 7-0719

[^13]
# CORROSION... the iron curtain of TV reception 



One of the major reasons for poor television reception is a corroded antenna... and in most cases you won't know when your antenna is corroded.

Corrosion changes the electrical characteristics of the antenna ... results in imperfect - even poor - reception.

Only with antennas that do not corrode can you be sure of good reception.

Tel-a-Ray antennas can't corrode! They are constructed of Dural, with stainless steel fittings . . . all elements sealed by the exclusive Tel-a-Roll process.

You get perfect television reception all the time. Whether you are replacing a worn antenna or installing a new one - buy Tel-a-

## Ray. <br> Tel-a-Ray Antennas "FIRST-BECAUSE THEY LAST"

> TEL-A-RAY enterprises, inc.
P. O. BOX 332, DEPT. C, HENDERSON, KY.


Clearer, Brighter Pictures
when these transformers match antenna impedance to line, or line to TV receiver. Signal input may be improved as much as four times! Designed to couple lowimpedance antenna to standard 300 -ohm line; or 300 -ohm antenna to 72 -ohm twinlead or low-loss 52 -ohm coaxial cable. At receiver, low-impedance line matched to standard 300 -ohm input. Housed in impregnated, weather-tight aluminum shield.

Dimension: $3 / 4^{\prime \prime}$ by $3 / 4^{\prime \prime}$ by $1-3 / /^{\prime \prime}$
Cat. No. Impedance Ratio List Price 6161 No. $\quad 52 / 300$ or $300 / 52 \quad \$ 2.75$ $6162 \quad 72 / 300$ or $300 / 72 \quad \$ 2.75$


existing v.f.o.'s. It was developed by GI3EVU and was described in Short Wave Magazine (London, E'ngland). The original circuit uses a Y63 elec-tron-ray indicator tube. A 6E5, 1629, 6 G 5 , or any similar type mi.y be substituted without changing the values of the components, as the tubes are very similar.

L1 is the oscillator, buffer, or doubler plate coil. L2 is a 2 -5-turn link coupled fairly closely to the cold end of L1. Adjust the coupling between L1 and L2 so the eye is almost fully closed when the signal source is tuned to the crystal frequency. Mount the tube so it projects through a hole in the panel close to the v.f.o. tuning dial, and in a position where it will not be obscured by the operator's hand while tuning.


The crystal frequency is not critical as long as it is within the frequency range of the circuit to which it is coupled. A $3.5-\mathrm{me}$ crystal is perhaps the most useful because it marks the lowfrequency end of the $80-, 40-, 20-$, and 10 -meter bands. If the v.f.o. operates in the 40 -meter band, a 7.0 -me crystal should be substituted.
(If you are accustomed to operating close to both edges of any band, you can add suitable crystals to mark the upper edges. The crystal should be connected in parallel with the one shown in the circuit. We have used four 80 -meter crystals in parallel to mark the edges of the band and two net frequencies. The crystals do not oscillate continuously, so there is no danger of interaction between them.

Be sure you know the exact frequencies of the crystals you use. It is highly advisable to borrow a good frequency meter and check the crystals in the marker circuit before you begin operating within a few ke of the band edges. Otherwise the system will have greater dangers than advantages.Editor)

END

'There! That's the kind of topcoat I want!"


Get This Valuable Book $\geqslant$ Just for Examining cornes New 6-Volume Set


Yes, you get this big, brand new book, "150 Radio-Television Picture Patterns and Diagrams Explained", absolutely FREE! Just off the press! Gives complete wiring circuits and diagrams on the latest Radio and Television Sets. Easy-to-read, large $81 / 2 \times 11^{\prime \prime}$ pages, with full instructions on how to read and use the diagrams. A "must" in every Radio and Television service-man's repair kit. You get this valuable book as a FREE Gift for asking to see Coync's great new 6-book set, "Applied Practical Radio-Television"! Here's "Know-How" That Makes You Worth More! You'll get into the big money faster in TELEVISION-RADIO if you know where to find the answer to servicing problems. Coyne's great new 6 -volume set gives you all the answers -quickly! For basic "know-how" that is easy to understand you'll find everything you want in volumes 1 to 5 which contain over 5000 practical facts and data. They cover every step from principles to installing, servicing, trouble-shooting and aligning all types of radio and TV sets. So up-to-date it 762-Page Television Cyclopedia Included
And then, for speedy on-the-job use, you get volume 6--the famous Coyne TELEVISION CYCLOPEDIA. It answers today's television problems on servicing, alignment, installation and others. In easy-to-find ABC order, cross indexed Use this 6 volume TV-RADIO LIBRARY free for 7 days; get the valuable Servicing Book ABSOLUTELY FREE!

## SEND NO MONEY!

ust mail coupon for 6 -volume set \& Diagrams. If you keep the set, pay $\$ 3$ in 7 days and $\$ 3$ per month until $\$ 23.00$ plus postage is paid. (Cash price $\$ 22.00$ ). Or you can return the library at our expense in 7 days and owe nothing. YOU BE THE JUDGE. Either way, the book of TV-Radio Patterns is yours FREE to keep! Offer is limited. Act NOW!

## FREE BOOK - FREE TRIAL COUPON!



Where Employed
() Check here if you want library sent CoD. You pay postman

522 plus COD postage on delivery. 7 -day money-back guarantee

## If you're in television

## THESE BOOKS CAN BE <br> IMPORTANT TO YOU

## movies for $7 V$

By Jobn Battison. The practical information you need for making the most effective use of movies on programs. Explains why some types of picrures are better than others; how to make titles and special effects; what types of lighting to use; various ways to present commercials; causes of technical faws and how ro avoid them; and a wealth of other information on principles. techniques, $\$ 5.00$ equipment.

## Painting with Light

By Jobn Alson. A leading Hollywood Director of Photography, winner of the 1951 "Oscar" for photography, explains his professional lighting techniques-whar equipment to use and how to place it for 2 particular mood or effect, indoors or out; how, for instance, to get candelight or a moving train at night, what lighting o use for rain, ior close-ups, and hun as viral for sood TV pictures as for as vital for good TV pictures
movies. \$6.75

## Mandl's Television Servicing

By Mattbew Mandl. Detailed, illustrated instructions for locating and correcting every fiaw or failure you're likely to encounrer, including those hard-to-find troubles. Simple signal tracing procedures, trade tricks in diagnosing troubles in minimum time, essentials of VHF and UHF servicing, complete master trouble chart. Fully and clearly explains each stage in today's receivers, showing what faults may occur in each and why. $\$ 5.50$

## Television for Radiomen

By E. M. Noll. Very clear, nonmathematical explanations of the functiop and operating principles of every element and circuit in TV reception, rogether with practical instruction on the installation, alignmens, adjustment and trouble shooting of modern receivers. Provides the THOROUGH UNDERSTANDING of TV needed for effective servicing. \$7.75

## Television and 9 m Antenna Guide

By E. M. Noll \& Matthew Mandl. Are interference, fringe reception, shost teception your problems? This book tells you how to overcome them-how to improve gain, minimize noise from the transmission line, get the MOST out of the antenna system at any location. A brief clear course in antenna theory is followed by instructions for determiniag the right type of antenna for the site, the best position for it, the right installation, with full, ested data on all types of antennas including those for UHP and VHP losations.
$\$ 6.25$
See these most belpful books at your book store, or write for onapproval copies to
THE MACMILLAN COMPANY 60 Fifth Avenue, New York II, N.Y.

## AM-FM ANTENNA SWITCHING

When using an AM-FM broadcast and shortwave receiver such as the Hallicrafters SX-62, a miniature d.p.d.t. knife switch will enable you to switch quickly from a long-wire shortwave or broadcast antenna to a 300ohm FM dipole without introducing mismatch between the 300 -ohm lead-in and receiver. When the switch is wired as shown in the diagram, throwing it to the AM position automatically connects the G (ground) terminal to one

of the $D$ (dipole) terminals. The short is removed and the 300 -ohm lead-in connected when the switch is thrown to Fm. I used a switch mounted on an insulated block measuring only $1 \times 11 / 4$ inches. The spacing between its blades is only $1 / 2$ inch. This preserves the symmetry of the $300-\mathrm{ohm}$ ribbon and minimizes reflections and mismatch. The switch is mounted on a polystyrene angle bracket at the rear of the re-ceiver.-Arthur Trauffer

## NOVEL CONTROL CIRCUIT

Because of distance or other factors, it is often impractical to run more than two control leads to a remote electrical device. With the usual circuitry, the two leads would be required to control a single device. This circuit shows how this same pair of lines may be used to control two separate devices.

With S1 and S2 open, the rectifier polarities prevent current flow through either relay rectifiers. When S 1 is closed, rectifier 1 is shorted out. Rectifier 3 conducts when the negative halfcycle of the line voltage makes its cathode negative. At the same time,

rectifier 2 conducts because its anode is positive. These two rectifiers pass current through relay 1 and cause its contacts to operate. Relay 2 operates when S2 is closed. Both relays operate when S1 and S2 are closed. C1 and C2 may be of any value large enough to keep the relays from chattering.
To avoid insulation problems and heavy lines, you may use low-voltage relays and supply the circuit from a step-down transformer.
D.c. may be used as the power source, thus eliminating rectifiers 1 and 3 . Circuits are selected by reversing the polarity of the applied voltage. With d.c. operation, it is impossible to operate the relays simultaneously.-Carleton Phillips

## Thousands depend on PHOTOFACT! they tell you why

Unsolicited letters tell what the world's finest TV and Redio Data means to Service Technicians


William T. Duarte 8 Harbourd Read Johnston 9, R. I.
"Thanks for introducing me to such a wellcompiled and tremendously helpful data service as your PHOTOFACT."
N. A. Jacobsen

562 Martha St.
Grand Rapids, Mich.

"Your folders were' recommended to me by another serviceman. I'm discovering that I should have them before I tackle any job that looks the least bit tough. It sure was my lucky day when I was introduced to your folders. Really, I don't know how one could service a set intelligently without having the PHOTOFACT Folder on it."


John J. Duplex
Duplex TV \& Radio
5153 W. Huron 5 t.
Chicago, III.
'I find your PHOTOFACTS a necessary must, and would not consider servicing without them."

## NOW! GET THE PROOF FOR YOURSELF!



Learn for yourself-at our expense-how PHOTO. FACT pays for itself by earning bigger repair profits for you! Select any Folder from the PF Index (if you haven't an index, get a copy from your distributor). When you write us for your Free Folder, be sure to state Photofact Set and Folder Number as shown in the Index. Get your Free Folder now. Examine, use, compare - see why you can't afford to be without PHOTOFACT!

HOWARD W. SAMS \& CO., INC. 2205 E. 46th St., Indianapolis 5, Ind.
HOWARD W. SAMS \& CO., INC.

# DON'T BUY A ${ }^{*} 630$ TV CHASSIS, KIT, CABINET, C.R.T. OR PARTS! 

## COMPLETE \#630 TV RECEIVERS . lower than ordinary TV Sets RADIOS . TV \& RADIO PARTS . TEST EQUIPMENT at wholesale



BUILDING YOUR OWN \#630 TV CHASSIS is now simplified with this COMPLETE SET OF BUILDING \& WIRING INSTRUCTIONS. Covers all \#630's trom the RCA $10^{*}$ SET to the latest SUPER DE LUXE
31 -tube $16^{\circ}$ to $24^{\prime \prime}$ RECEIVER 31-tube $16^{\prime \prime}$ to $24^{\prime \prime}$ RECEIVER.
EVERYTHING AT A GLANCE-LAYOUT CHARTS show chassis and components in actual LIFE.SIZE with instructions alongside the illustrations,
GUESSWORK IS ELIMINATED by speeially pro pared SCHEMATIC OIAGRAMS. LOCATION GUID. ANCE. CODE CHARTS. ALIGNMENT PRDCEDURE
and TOP ANO BOTTDM PHOTOGRAPHS OF A and TOP ANO BOTTDM PHOTOGRAPHS OF A
COMPLETED CHASSIS (assembled from these instructions) clearly showing placement of each component. INDISPENSABLE for BUILDING, CONVERTING or TROUBLESHOOTING any \#630 TV SET.
Popular prleed at only..... Postpaid Including "HIGHLIGHTS OF TV OFFERS FOR 1953"

## THE NEW CASCODE TUMER

can now be installed in ANY TV set with the
Brooks CASCODE MANUAL
Illustrations, Schematics and
easy to follow, step by step Instructions
only 516 Postpaid
Including 'Highlights of TV Offers for 1953'

## HOTTEST TV PACKACE for "ONE BUCK"!



EVERYONE INTERESTED IN TELEVISION should own this TV literature package . . . The information will be found useful on any make TV set. It's different and right to the point. It carries instructions that are up to the minute and not yet found in expensive text books. Indispensable to the TV technician yet easy enough for anyone with even a limited knowledge of TV to understand and follow.
SAVE MONEY ON REPAIRS - Important common occurrences are carefully analyzed and corrective procedures are suggested. You ore told what to do-WHEN THE RECEIVER FAILS to operate, when there are ghosts, interference. NO PICTURE, PICTURE FOLD-OVER, NO RASTER, PICTURE BLOOMS, DISTORTED PICTURE, PICTURE ROLLS, NO SOUND, DISTORTED SOUND, CORONA EFFECTS, ETC. PICTURE TUBE ASSEMBLY and PATTERN ADJUSTMENTS are outlined in detail (the ion trap adjustment caution may save you the price of a new picture tubel. The HORIZONTAL SYNC, RCA TUNER and STANDARD TUNER step by step adjustments alone are worth many times the cost of this
packoge.
TUNING GUIDANCE and ANTENNA ADVICE will enable you to enjoy peak performance at its best. The HIGH VOLTAGE CAUTION will give you that free and easy feeling of safety while handling the chassis or any of its parts.
Just think of being able to convert any $10^{\prime \prime}$ TV set into a life-size 24" receiver in as little as one hour . . . The ILLUS. TRATED TV CONVERSION MANUAL makes that possible. The \#630 CIRCUIT DIAGRAM, KEYED AGC DIAGRAM, RESISTOR \& MICA CODE CHARTS need no emphasis as to their usefulness.
YOU HAVE NOTHING TO LOSE. YOUR MONEY WILL BE CHEERFULLY REFUNDED IF NOT COMPLETELY SATISFIED.

- Hints for Better Picfures on 630 TV
- 630TV Diagram with Modifications
- Illustrated TV Conversion Manual
- Pulse Keyed AGC Circuit Diagram
- RMA Resistor \& Mica Code Charts


Including
"Highlights of TV Offers for 1953"


## FOR FINEST TV RECEPTION

## FOR USE WHEREVER TOUGH WEATHER CONDITIONS PREVAIL

 TESTED AND RECOMMENDED FOR FINEST UHF - VHF RECEPTIONGCODLINE SHEATH-LEED-a NEW DON GOOD PRODUCT-is our fine Standard *GOODLINE AIRLEAD encased in a tubing of pure polyethylene of finest quality to protect it under all-weather and all-climatic conditions. It is especially recommended for use in coastal areas where salt spray encrusts the regular leadline, in hot humid areas, where much alternate rainfall and strong sunlight prevails
and where leadlines are subjected to frost, snow and icy conditions.


Exhaustive tests made after two years have shown that the average flat or round 300 ohm leadline installed within two blocks from the ocean will give but 2 to 4 weeks of satisfactory operation due to salt spray deposits encrusting the leadline. With GOODLINE SHEATH-LEED protection, the product gives highly satisfactory service for a year and more.

For finest trouble-free reception-even in areas where more favorable weather PrevailsINSIST UPON HAVING GOODLINE SHEATH-LEED INSTALLED FOR YOUR LEADLINE.
NO. 803-GS SHEATH-LEED: STANDARD BROWN GOODLINE AIRLEAD. Sheathed in pure Polyethylene Standard Brown LEED-SHEATH (another new Don Good product). For 300 ohm use. 1,000 foot reels-standard length... Shorter lengths available.
NO. 823-GS SHEATH-LEED: Color-Golden-Clear Goodline Air Lead. Sheathed in SilverGray Pure Polyethylene LEED.SHEATH (another new Don Good Product). GOLDEN.CLEAR GOODLINE AIRLEAD is electronic polyethylene in its purest form, and when shielded from ultra-violet light with Silver-Gray LEED-SHEATH, the installation will give years of troubleiree service. For 300 ohm use. 1,000 foot reels-standard length... Shorter lengths available.

## NO. 733-GA: * GOODLINE AIRLEAD. THE BASIS OF FINEST TV RECEPTION.

FEATURES: 1-Sharp, clean, "snow-free" pictures-with $80 \%$ of loss producing dielectric web removed. 2-Correct inpedance for "ghost-free" reception. Nominal 300 ohms. 3-Lower in cost than other leadlines purported to accomplish same results. 4-Correct spacing for minimum radiation loss. Less than $1 \%$ of operating wave length. 5-Fully insulated-approved by safety experts. 6-Pure, electronic polyethylene insulation-specially treated by our chemists for extreme weather. 7-Highly efficient conductors: Flexible, stranded-to insure long life. 8-Easily installed with standard insulators. 9- Packaged: $100^{\prime}-250-500^{\prime}-$ $1,000^{\prime}-2,500^{\circ}$. Colors: Standard Brown, Golden.Clear and Silver-Gray.

If your jobber or tV dealer cannot Supply, write for samples and new literature
*Patent Pending. "Trade Mark. U.S. and Foreign Patents Pending
EXCLUSIVE LICENSEE AND SOLE MANUFACTURER


OUTSTANDING GOODLINE PRODUCTS:
DON GOOD, INC. Manufacturers: Sheath-Leed-\& Leed-Sheath Protection. Goodline Airlead.


STANDARD BRANDS NEW INDIVIDUALLY BOXED

| 148 | . 48 | 6 GUV | . 59 | 12407 | . 85 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 183 | . 84 | 6AV6 | . 49 | 12547 | . 68 |
| $1 \mathrm{C}_{6}$ | . 53 | 6BC5 | . 61 | 12BA7 | . 89 |
| 107 | . 58 | 6BG6 | 1.85 | $125 \mathrm{K7}$ | . 63 |
| 105 | . 47 | 6896 | .1.15 | 12507 | . 68 |
| 107 | . 68 | 6CB6 | . . 58 | $125 N 7$ | . . 73 |
| $3 ¢ 4$ | . 52 | $6{ }^{6} 6$ | . 50 | 35 L 6 | . 51 |
| 5 Y 3 | . 47 | 6.56 | . 71 | 35W4 | . 43 |
| 5 U 4 | . 58 | 8K6 | . 63 | 3525 | . 47 |
| 5 V 4 | . 93 | 65.37 | . 68 | 5085 | . 51 |
| 648 | . 89 | CSNT | . 80 | $50 ¢ 5$ | . 51 |
| 6 AC7 | 1.02 | 6V6 | . 63 | 5016 | . 57 |
| 6AG5 | . 78 | 6W4 | . 58 | 75 | . 83 |
| 6 AK5 | . 89 | $6 \times 4$ | . 48 | 955 | . 40 |
| 6 AL5 | . 58 | $12 \mathrm{AT7}$ | . 78 | 1 N34 | . 52 |
| Write For New Freo Catalogue |  |  |  |  |  |
| GENERAL ELECTRONIC DIST. CO. 8 Pork Ploce-New York 7, New York |  |  |  |  |  |

## Try This ©ne

## CORONA DISCHARGE

Corona discharge in some TV sets and oscilloscopes is annoying because its effects are often mistaken for other faults and its source is sometimes hard to localize. In a TV receiver, this trouble is likely to cause breaks in the line structure of the raster, variations in brightness, and sometimes irregular black bars on the screen. In a scope, it causes variations in intensity and erratic breaks in the trace. You may hear clicks or frying sounds from the high-voltage compartment or the base of the C-R tube.

If corona discharge is suspected, sniff around the back of the set. If you smell ozone, turn out the lights and look over the power supply, the $C-R$ tube and rectifier sockets, and the highvoltage leads. Watch for a bluish glow. Try blowing your breath on the highvoltage points. A soda straw or piece of spaghetti is handy for this.

When you locate the source of trouble, dress down all sharp corners and edges and smooth off rough solder joints with a hot iron.

If the discharge is on an insulator, replace it because it has probably broken down under the high potential. Discharge from a lead can be cured by replacing the lead with one designed for high-voltage operation. Keep the lead as much in the clear as possible. If this fails, try increasing the size of the offending conductor or connection. Keep everything as large and smooth as possible.-R. A. Cunningham

## WELLER SOLDERING GUNS

If your Weller soldering gun is slow in heating, look at the nuts that hold the tip in place. If they are the least bit loose, they will introduce enough resistance into the circuit to seriously reduce the tip current. Try tightening these nuts with a wrench and note how quickly the gun heats up.-Charles Erwin Cohn

## tV high-voltage troubles

Sometimes the 1B3-GT/8016 rectifiers fail to light under load in sets having flyback power supplies. This may be caused by a poorly soldered connection in one of the filament pins. The resistance of the connection may be high enough to produce a serious drop in filament voltage. A remedy for this condition is to reheat the filament pins with a hot soldering iron.-Leonard Pjeiffer

## PRECISION RESISTORS

Replacement heating elements for electrical appliances such as small radiant heaters and hot plates can be used to make excellent high-wattage precision resistors for meter shunts and multipliers. When fully stretched out, the wire has a resistance of about 0.2 ohm per inch. The wire can be wound around a ceramic or bakelite tube. Screw-type terminals make the best connections.-Richard J. Sandretto END


## depends a whale of a lot on your ability to



BASIC ELECTRONIC TESTINSTRUMENTS by Rufus P. Turner
New and completely
 pages, $6^{\prime \prime}$ by

## Everything you

need to know
about ALL instrument types used in modern Radio-TV service:
1-Simple Meters for Current \& Voltoge 2 -Ohmmeters \& Volt-Ohm-Milliammeters
Vocuum-fube
Power Measurement \& Meters
\& Mpedance Meters Measurements 6-Copacitor Checkers 8-Special-purpose Bridges \& Accessor Bridges \& Accessori Their Uses -R-F Test Oscillotors \& Signal Generators 11 -Audio Test Oscillo. tors
-Meosuring Radio Frequencies Measuring $A$
Frequencies - Audio-Amplifier Testing Devices
16-R-F Signal fracers

## ECTRONIC effectively!

 TEST INSTRUMENTSHere at last is a complete line-up of how-to-use-it lata On ALL TYPES OF MODERS In coniplete. casily understood terme. you learn all about over 60 dirrerent instruments. You are shown ex how to use them-on all kinds of service jobs.
You discover how to use familiar instruments more fully.
And you gain a first-hand
working knowledge of the working knowledge of the
many newer types such as many newer types such as
griddip oscillators. TV sweep and marker generators, TV linearity pattern generators. disecrion meters, square wave
tornerators and others that are so essential in servicing today's cotuplicated equipment.

## What Instrument

 To Use .How to Use It Properly
To the beginner BASIC
ELECTHONIC TEST INSTHUMENTS offers complete tratning in modern instrument usage. To the more experi-
enced serviceman, it is a enced serviceman, it is a more thar pay for itself in time sared on a single job. Each subject is covered from
aract ical service standpoint a practical service standpoint manufacturer's instruction manual. You learn the limitations of each instrument as whotos. dat it tables and sehematies heln make things as clear as A-B-C.
And here are some of the Wook's EXTRA "how-to-do-it" features: How to measure re-
sistance with a current meter ; how to check power drain hasily and quickly: how to measure $\mathbf{R - F}$ impedance with a simple T-network; how to
cherk frequency with a scope: cherk freduency with a scone. how to calculate a shunt or
multiplier: how to calibrate muetips $\quad$ and dozens of

other subjects. | other subjects. 10 days at nur |
| :--- |
| Read it for | risk! Clip 10 -day examination

coupon and send to: Rivehart coupon and send to: Rinehart
Books, Technical Division,
Hept. RLG-13. 232 Madtson
Are., New York 16. N. Y.

## 10-DAY FREE EXAMINATION

Dept. RE-13, RINEHART BOOKS, Inc.

## Technical Division. <br> 232 Madison Ave.

Send Turner' New York 16, N. Y.
TEST INSTRUMENTS for ELECTRONIC WXAMINATION. If I decide to keep book, E.XAMINATION. If I decide to keep book, I will return book postpaid promptly and owe you nothing.

## Name

Address

Employer's Name and Address.
| OUTSIDE U.S.A.-Price $\$ 4.50$, cash only. Money back if book is returred postpaill in 10 days.

RHOMBIC ANTENNA QUERY
? I am about 200 miles from $T V$ stations on channels 2 and 5 in Atlanta, Ga. The receiving antenna is a rhombic with 55 -foot legs terminated with a 789-ohm resistor and fed with $300-0 \mathrm{hm}$ ribbon line. The antenna is 45 feet wide at the center. I seldom get a picture, but when I do, reception is fair on channels 2 and 5. Is there any way in which $I$ can modify the antenna to improve reception on channel 2?-D. A. D., Knoxville, Tenn.
A. We assume that your rhombic is as large as you can conveniently make it, so we won't suggest making it larger. Its proportions are good and we would not suggest changing them. You may be able to improve reception by careful orientation of the antenna and by correctly matching the antenna to the transmission line.

A rhombic antenna for $d x$ reception is very critical and must be oriented in the vertical and horizontal planes so the main lobe points directly at the transmitting station and lines up with the angle of arrival of the incoming signal.
Horizontal orientation or alignment of a rhombic is an exacting task when the installation is beyond the line of sight from the transmitter. Buy (from a local airport or aviation supply house) a regional airways navigation map showing the receiving and transmitting locations. Mark these points on the map and draw a straight line between them. Use a protractor to measure the angle that this line makes with magnetic north. Use the bearing of this line in laying out the base line of the rhombic. A surveyor will probably stake out the antenna base line for about the same fee as would be charged by a local TV technician for a standard antenna installation. If you do not care to hire a surveyor for the job, a surplus military marching compass can be used to lay out the antenna location. When laying out the base line, be sure that the compass is not thrown off by magnetic-metal tools, keys, belt buckles, and the like. Keep such material as far as possible from the compass. Make several sightings from the same point and lay out the base line midway between the two extremes.

Since you do not know the angle of arrival (wave angle) of the incoming signal, you will have to adjust the antenna after it is erected. The supporting lines for the sides and the terminated end should run through pulleys fastened to the tops of the supporting masts. This enables you to tilt the plane of the antenna and adjust its wave angle to correspond with the angle of arrival of the TV signal. For your antenna, the terminated end should be about 18 feet lower than the end to which the lead-in is connected. You can adjust the plane of the antenna for best reception and least noise when receiving a signal. Keep the terminated end at least 10 feet above ground.


## BOTH BOOKS

FREE
FREE


FREE to every reader of IRADIO-RLECTiLON'ICS No
strings. nothing to buy, "How to Use Diagrams" gives strings. nothing to buy, for to use bagrams in radio servieing. The 25 -page INDEX will tell you just what mod els are included in all SUPISEME "Most-Often-Neetera Radio or Television manuals. If sou need a circuit at any
time, this INDEX wilt tell you where to get it. Get both books in 2 -ind rolume FREE; just send stamp for postage. SUPREME PUBLICATIONS 3727 w. ${ }^{13}$ thisago 23.14.

## PLEASE MENTION RADIO-ELECTRONICS when writing advertisers

A 300 -ohm transmission line does not provide a good match to a rhombic which has an impedance of approximately 800 ohms. Connect a 490 -ohm quarter-wavelength matching section between the antenna and lead-in. Use No. 12 wire spaced $21 / 2$ inches center-to-center or standard open-wire TV lead-in. The length of the matching section in inches equals 2,880 divided by the center frequency of the TV
channel in megacycles.
Since you are interested in reception on two channels, you should have a separate matching section and lead-in for each. Use 57 mc for channel 2 and 79 me for channel 5 when calculating the lengths of the matching sections.
Use a d.p.d.t. antenna change-over relay at the antenna to connect the antenna to the matching section and lead-in being used.

## FIELD-STRENGTH METER FOR TV MEASUREMENTS

? I would like to construct an inexpensive TV field-strength meter for use in antenna orientation and experiments. I have heard that one can be constructed from a TV booster or front-end. Please tell me how this is done.-L. McC., Schenectady, N. Y.
A. Such a meter usually resembles the video section of a TV receiver. The output of the tuner works into a conventional video i.f. strip. The output of the video detector is measured with a high-resistance voltmeter or the detector load current is read on a sensitive microammeter. A multiplier-resistor network is usually included to permit the unit to be used for a wide range of signal strengths. The i.f. strip is usually sharply tuned to the video carrier frequency for greater sensitivity. This calls for careful shielding and bypassing to prevent oscillations. Sensitivity may be controlled by varying the bias on one or more of the i.f. tubes.
The circuit of a tuned r.f. field-
strength meter is shown here through courtesy of Cornell-Dubilier Electric Corporation. The output of the booster feeds a full-wave bridge detector circuit consisting of two resistors and two silicon diodes. A 100-uz meter and a $5,000-\mathrm{ohm}$ wire-wound potentiometer

are connected in series across the output of the bridge. The reading of the meter is proportional to the strength of the signal fed into the booster. The 5,000 -ohm calibration control permits the meter to be set to a predetermined reference point. Silicon diodes are more efficient at TV frequencies than most germanium types.

## CONVERTING A G-E 260 PORTABLE FOR A.C. OPERATION

? I have a G-E model 260 portable receiver which I would like to convert for a.c. operation only. I want to retain the original tubes and eliminate the 2-volt storage battery. Please print a diagram of a suitable power supply and show how it can be connected to the re-ceiver.-R. W. O., Minneapolis, Minn.
A. The diagram shows the circuit of an a.c. operated power supply (battery eliminator) and the method of connecting it to the receiver.

Disconnect the low-voltage end of the 10,000 -ohm resistor in the original power supply from the lead going to pin 3 of the first i.f. amplifier and to the 82,000 -ohm screen dropping resistor for the 1LC6. Connect the lead to pin 3 of the 1LN5 to the 90 -volt lead from

line supplying the 3Q5, 1LH4, 1LN5 second i.f., 1LC6 plate, and 1LN5 r.f. amplifier. Connect this $\mathbf{B}$ plus line to the 95 -volt point on the 5,000 ohm voltage divider in the supply.
Connect a 5.6 -ohm resistor across the low-voltage (filament) supply output and adjust the 3 -ohm resistor for exactly 2 volts output. Remove the $5.6-\mathrm{ohm}$ resistor and connect the 2 -volt lead to the tap on the r.f. choke.
The low-voltage choke is made by winding as many turns of No. 22 enameled wire as possible on the core of an old a.c.-d.c. filter choke. The rectifier may be a Mallory 1B8R or equivalent, and the power transformer is a halfwave type designed for use with selenium rectifiers.


## PICKERING and company, incorporated

Pickering High Fidelity Components are available throu!h leadin! Radio Parts distributors everywhere; detailed literature sent upon request. Bures eventir

1411771414

Scientifically engineered for MAXIMUM SAFETY!

## insuline

## TELEVISION LIGHTNING ARRESTERS <br> Fastest selling lightning arresters in the country. Precision made to assure maximum protection. Supplied with sure-grip binding washers to eliminate necessity of etripping <br> Model 6113-Attach to any conven <br> ient base. Can be used indoors, <br> Model 6114-Includes metal strap for securing to metal pipes of $1 / 2$ List $\$ 1.50$

 Write Dept. RE-1for Latest Catalog.

## insuline

CORPORATION OF AMERICA INSULINE BUILDING - $36-02$ 35th AVENUE tiland city N. r.
West Coast Branch and Warehouse:
1335 South Flower Street, Los Angeles, Calif. Exclusive Cangdian Salos Agents:
CANADIAN MARCONI COMPANY, Toronto


## Flying Saucers?

Frankly we don't know if they"re fact or fiction . . . but if they are fact it wouldn't surprise us a bit to learn that some extraterrestrial manufacturer has incorporated SELETRON Selenium Rectifiers and R. R. Co. Germanium Diodes into the design. That's because-as pioneers in the field of electronic develop-ment-we ve hav our hand in some or the most dificult projects
and mer some of the stiflest requirements ever cooked up! Making drawing board dreams come true are daily chores at Radio Receptor Co.!


## ADMIRAL AM-FM TUNERS

Oscillations which cause motorboat ing or whistles in the center of the AM band when the loop antenna is used are the result of excessive regeneration in the converter stage of the 4 J 1 and 4 K 1 chassis. The AM peaking coil L606 (between pin 6 of the 12AT7 and the plate lead of the first AM i.f. transformer) is used to provide positive feedback in the converter stage. This eliminates grid loading, inherent with a triode mixer, and provides greater conversion gain. If the resistor shunting the peaking coil increases beyond its specified tolerance, the set will oscillate in the middle of the band

To verify this as the cause of the trouble, place your hand across the loop antenna. If oscillations stop, replace the damping resistor and the peaking coila $475-\mu \mathrm{h}$ unit coded with a blue dotwith a new $120-\mu h$ coil (part No. 73A510) coded with a black dot

If oscillations are present when the new peaking coil is used, look for trouble in the first AM i.f. transformer. In some cases, the silver mica capacitors in the transformer open up and cause the converter to oscillate. Replace the trans-former.-Admiral Service Bulletin

## BUZZ IN SENTINEL SETS

If station buzz is excessive and is not caused by the contrast control being advanced too far clockwise, adjust the discriminator secondary tuning slug for minimum buzz. Make sure that this position is between two maximum buzz peaks which will be noticed when the tuning slug is turned to the right and to the left of the minimum buzz position.

This adjustment screw is located on top of the discriminator coil shield and between the 6 AL 5 sound detector tube and the 6AU6 sound i.f. amplifier tube. -Sentinel Service Notes

## MOTOROLA TS-174 CHASSIS

A vertical roll which cannot be stopped with the hold control may be caused by a change in the value of the fixed resistor in series with the vertical hold control. In one case, the value of the resistor had increased from 220,000 to 320,000 ohms.-Stephen A. Quering
(The vertical oscillator circuit varies with different production runs and versions of the chassis. In sets which use a $655-G T$ blocking-tube oscillator, the series resistance is 220,000 ohms. If the sweep generator is a 12 AU 7 multivibrator, the series resistance should be 330,000 ohms. When checking voltages and component values, be sure to refer to the manufacturer's service data and notes on production changes.-Editor)

## RCA TV RECEIVERS

A light 2-3-inch horizontal band which drifts slowly across the face of the picture tube may be caused by oscillations in the $6 \mathrm{BQ7}$ r.f. tube in the 17T150, 17 T 160 , 17 T 170 (chassis KCS66) and 21 T 160 (chassis KCS68) models. In most cases, this trouble can be cured by replacing the tube.-Gerald J. Macheal:
namome TUBES
INOIVIDUALLY BOXED
standard warranty New Low Prices


Many other types equally low priced-include all your tube needs with your order One of the largest stocks in the country!
Min. Order $\$ 25.00$ Terms: $25 \%$ with order balance C. O.
All prices subject to change without notice. F.O.B. New York City. Mail order division


AC-DC MUSIC AMPLIFIER


THE NEW


HYDRAULIC MAST

Now you can have the SKY-HI mast in steel or aluminum with latches or without, in any height up to and including 200 feet.

Your choice of hand pump, 110 volt or 6 volt electric driven pump, or in many cases available water pressure is sufficient for operating the aluminum mast.

Also complete trailer and mast assembly up to 100 feet for survey work ready to put into service.

These products are approved and used by mony government and commercial agencies.

We welcome comparison with any other mast built when you are considering speed of erection and lowering, and all around versatality.

Write for details.


GET INTO ONE OF THESE GREATER OPPORTUNITY FIELDS


TRAIN IN THE GREAT SHOPS OF


OLDEST, BEST EQUIPPED SCHOOL OF ITS KIND IN U.
Come to the Great shops of Coyne in Chicago. Get Eractical training in TELEVISION-RADIODefense Program. Prepare now for a Industry or ligher rating in Armed Forces.
Approved for Veterans--finance plan-en ployment service while training if. Part time emtuition plan for men of Draft Age. FREE BOOK Clip coupon for Big Free Illus salesman will call. Act NOW.
B. w. Cooke. President A TECHNICAL TRADE



## TV ANTENNA PRECAUTIONS

Always disconnect a TV or FM receiver from the line by pulling the plug before making any adjustments on the outside antenna. If the set must be turned on while orienting the antenna, be sure that you wear heavy gloves and that you do not permit any exposed part of the body to contact the antenna or mast. Failure to observe these precautions may cause serious injur, Don't rely on the switch. Pull the plag! I have been shocked several times while reinstalling or orienting TV antennas. In most instances, the shock came when I touched the radiator connected to the lead-in. I don't believe that I got the full line voltage, but it was strong enough to be uncomfortable. In another case, I received a severe shock when I touched the mast while standing on a metal ladder. This time, the shock could have caused me to lose my balance and fall to the ground. Now, I pull the plug whenever possible and I wear heavy work gloves during antenna orientation.Alexander Kauders

## TV SERVICING TOOL

The gadget shown in the illustration is handy for adjusting the rear controls on large TV cabinets while watching the picture from the front. The tool is made from an auto radio flexible con-

trol shaft, a length of copper tubing, and a short piece of windshield-wiper hose. The copper tubing controls the degree of bend to prevent whipping and binding. The rubber hose slips over the shaft of the control to be adjusted.Motorola Service and Installation Bulletin

## CORONA TROUBLES

The cheaper fiberboard type highvoltage insulation materials tend to absorb moisture in coastal areas where humidity is high. This causes loss of high voltage and severe corona troubles. In one 16 -inch set, a faint blue was observed all over the insulation and high-voltage leads when a blanket was thrown over the high-voltage cage to darken it. The condition was cleared up by replacing the fiberboard with plastic and the socket with a porcelain type.

Severe corona will often cause a horizontal output tube to fail within a few weeks. Metal shielding which is too close to the plate cap of the output tube will show a polished or bright circle opposite the cap if corona exists at this point.

AMERICA'S FASTEST GROWING TV ANTENNA MANUFACTURER DAVIS ELECTRONICS

THERE MUST BE A REASON
THE REASON IS: The DAVIS SUPER-vISION is the finest antenna built for V.H.F. ALL CHANNEL and for FRINGE AREA and DX RECEPTION... A steady flow of enthusiastic letters from users all over the U.S. attests to this fact - and is outstanding proof of its UNIVERSAL ACCEPTABILITY.



## DAVIS SUPER-VISION

"THE ORIGINAL ANTENNA SOLD WITH A MONEY-BACK GUARANTEE"

1. EXCELLENT FOR FRINGE AREA and DX RECEIV. INE-and broad band receiving with high gain INE-and broad band receiving
on all channels-2 through 13 .
2. CLEARER PICTURES UP TO 125 MILES OR MORE -from the station.
3. GHOST PROBLEMS REDUCED or eliminated due to excellent pattern.
4. PROVIDES 10 OB OR MORE GAIN ON HIGH CHANNELS where gain is needed most.
5. EXCELLENT FRONT TO BACK RATIO on all channels. No co-channel interference.
6. MINIMIZES INTERFERENCE: Airplane Flutter - Diathermy and Ignition-F.M.-Neon Signs-X.Ray-Industrial-Etc.
7. ELIMINATES dOUBLE STACKED ARRAYS, and out-performs 2 bay yagis on low band and 4 bay yagis on high channels.

## DAVIS ELECTRONICS

 4313 WEST MAGNOLIA BLVD. BURBANK, CALIFORNIAManufacturers of V.H.F. and U.H.F. Antennas Backed by Over a Quarter Century of Electronic Experience
advantages of the davis super-vision WITH ELECTRONIC DIPOLE SEPARATORS:
8. ONLY ONE TRANSMISSION LINE NECESSARY.
9. NO WORRY OVER POSSIBLE CHANNEL CHANGES on either high or low channels.
10. CAN BE TIPPED WITHOUT TILTING MAST to take advantage of horizontal wave lengthis.
11. Can be used with ANTENNA ROTOR

AT YOUR JOBBERS, OR WRITE TO:
DAVIS ELECTRONICS
4313 West Magnolia BIVd., Burbank, California
SIRS: RUSH JNFORMATION TO ME AS CHECKED
BELOW:
$\square$ Send Free Technical Data on new SUPER-VISION
ANTENNA.
$\square$ Send Name and Address of NEAREST JOBEER.
Name.
Street
City_ State

Spot TV trouble symptoms at a glance . . . fix them twice as fast!
NOW! SAVE HUNDREDS OF DOLLARS SERVICING TIME!


The short cut way of handling up to $90 \%$ of your television troubleshooting by the easy PICTURE ANALYSIS METHOD!

|  |  |
| :---: | :---: |
|  |  |
| troubleshooting can |  |
| be cut to minutes. | The Pix-O-Fix Guide not only helps |
| Repalrs can be made | you locate the trouble quickly but then shows you exactiy how to fix It. Sted-by- |
| the new Ghi | sted repalr instructions follow. In most |
| TROUBLEFINDER | cases. the particular component most |
| he | likely to be faulty is specified. Quick |
| in its "window | tests to apply to it are explained. If |
| screen pleture on | part substitution is likely to be more |
| you are repairing. The | effective than an instrument teat, this |
| Key Number also ad- | is recommended. |
| de. This directs you to | X-O-FIX is |
| I possible causes | vision recelvers. Operation is clear and |
| ouble and the s | - |
|  |  |

The
The P1x-O-Fix Guide not only helps you locate the trouble quickly but then
shows you exactly how to fix $1 t$. Sted-bysted repalr instructions follow. In most cases. the particular component most ests to apply to it are explained. If part substitution is likely to be more s recommended.
islon recelvers. appricable to all telesimple. Money-back guarantee if you're more than satisfled!

## TV TROUBLE FINDER GUIDE

## 24 COMMON television

troubles identified by actual TV sereen photos.

## Only \$1. 10 daY Money back Guarantee

190 POSSIBLE
these troubsible causes of ized to the particular stage of the receiver where thay are most Ilkely to occur.
253 DEFINITE, easily undor. stood remedies for theso troubles.
4,500 WORDS in CAUSE ! and REMEDY section to explain | stop by step what to do.

Dept. RE-13, Rinehart Books, Inc., Technical Div. 232 Madison Ave., New York 16," N. Y.
Enclosed is $\$ 1$ for which please rush a PIX-O-FIX TROUBLE FINDER GUIDE. If not satisfactory, I will refurn it postpaid within 10 days and you guarantee to refund my \$1.

Name

City. Zone, State
PRIOE OUTSIDE U.S. A. $\$ 1.25$ cash-same relurn privilege.


by T-V PRODUCTS CO.

Amazingly Powerful Reception

Rugged All-Aluminum Construction

Lifetime Factory Warranty

Complete factory Preassembly features sensofional "Quick-as-a.Wink" construction. No Nuts or solfs to tighten... rugged rivel assembly prevents damage by wind and storm vibration.


Choice of 3 Time Saving


Famous "Litfle Devil" RESISTOR ASSORTMENTS


The $1 / 2$ watt assortment contains $150 \quad 1 / 2$ watt carefully selected Ohmite "Little Devil" assortment individualiy marked, insulated composi- \$15.00 tion resistors. 1 and 2 watt assortments each contain 125 resistors. All assorteach contain 125 resistors. All ( 10 ohms
ments include the 40 values ( to megohms) most frequonty used 8.75 by servicemen. All plastic cabinet has 2 watt five drawers, each with 8 individually assortment labeled compartments. Offered at the $\$ 25.00$ price of the resistors alone.

Address Orders To Dept. RE 1 Write For free FY 1 FLYER

## MHOLESALE

 1 RADIO PARTS CO., Inc.311 w. Boltimoresp.
BALTIMORE 1, MD.

## ENGINEERS



Make this your home for impartant wark under ideal conditions

## TV Receiver Design Eng.

Test \& Inspection Eng.
Electronics Eng.
Field Engineers
Lab Technicians

## TO WORK ON:

Radar, G. C. A., Mobile Radio, Auto Radio, Airborne Communi. calion \& Navigation Equipment, Television, Antennas, Microwave Equipment, Servo Mechanisms, Guided Missiles and Test Equipment.

## YOU BENEFIT

from high wages, a modern, air-conditioned plant, paid vacations and holidays,

Write
Wire,
Phone
Mr. E. O.
Cole,
Dept. group insurance and a good chance for advancement. Housing immediafely avail. able in the beautiful suburban and country areas that surround the Bendix plant.

## Bendix Radio

DIVISION OF BENDIX AVIATION CORP. BALTIMORE-4, MD. Phone: TOWSON 2200

(Available of leading parts distributors)

## GERNSBACK PUBLICATIONS, INC.

Publishers of RADIO.ELECTRONICS
25 West Broadway New York 7, N. Y.

## STROMBERG-CARLSON 421 SERIES

Repeated failure of the 6BL7-GT vertical oscillator and output tube (V18) in the 421 series chassis has been corrected in all chassis dated $52-20-1$ by substituting a 6 C 4 for the vertical oscillator section of the 6BL7. A 6C4 tube was installed in an unused socket hole in the left front corner of the chassis. Grid, plate, and cathode leads (pins 4, 5 , and 6) were disconnected from the 6BL7-GT (V18) and connected to pins 6,5 , and 7 , respectively, of the 6 C 4 . Pins 3 and 4 of the 6 C 4 were connected to the filament line and the unused pins (4, 5, and 6) of the 6BL7 were grounded.
If an earlier 421 receiver with a 6BL7 that causes vertical roll and which does not incorporate the 6 C 4 is encountered, it is suggested that the 6BL7 be replaced by one of the improved types. These can be identified by referring to the coding etched into the envelope beneath the 6BL7 tube designation. All Sylvania 6BL7-GT's are now of this improved version, so tubes coded E2E or later (F2E, G2E, H2E, etc.) are satisfactory replacements. If desired, the changeover to a 6C4 described in the first paragraph, can be made.-Strom-berg-Carlson Current Flashes

## EICO 425K OSCILLOSCOPE

Improper operation of the intensity control-indicated by excessive brightness at minimum setting-is usually caused by heavy leakage in capacitor C25 in the intensity modulation input circuit. The original capacitor is a $0.25-$ $\mu \mathrm{f}$ unit, rated at between 1,000 and 1,200 volts. However, the normal voltage at grid 1 of the 5 BP 1 is 1,380 volts $\pm 20 \%$. This capacitor may check good under normal resistance checks but its

resistance drops when voltage is applied. This places an excessive drain on the high-voltage supply and causes a high negative voltage to appear across the INT MOD terminals.

Replace this capacitor with a unit rated at 1,600 volts or more, even if it has not shown the symptoms of leakage or breakdown. If it breaks down in use, operator may get a severe shock or equipment connected to the INT MOD terminals may be damaged.-G. $P$. Oberto


## 1 ENCYCLOPEDIA ON CATHODE-RAY OSCILLOSCOPES AND THEIR USES by Rider and Uslan

The most complete source of practical, usable knowledge concerning the oscilloscope ever published. Covers practically every kind of 'scope manufactured during the past ten years. Hundreds of pages alone are devoted to actual application plus complete, detailed treatments of auxiliary equipment, measurements, waveforms, visual alignment of AM-FM-TV receivers and more, much more. A "must" for anyone using an oscilloscope. Completely indexed, with 992 pages ( $81 / 2 \mathrm{x}$ 11") 3,000 illustrations ................... $\$ 9.00$

## 2 tV troubleshooting and repair GUIDE BOOK

by R. G. Middleton
A new practical book designed to make your tv servicing easy. It tells-in easy-toread language - how to spot receiver troubles... and how to correct them permanently. You'll find enough practical data in one chapter to repay the low cost of this book many times over. Typical chapters include: Receiver Differences and Waveforms; Visual Alignment; Troubleshooting Sync Circuits; Locating Sweep Troubles; Causes and Cures of Receiver Buzz; Test Equipment Kinks. Indexed and illustrated with over 190 ( $81 / 2 \times 11^{\prime \prime}$ ) pages bound in durable art cover
$\$ 3.90$

## 3 UHF PRACTICES AND PRINCIPLES by A. Lytel

A new, up-to-the-minute book that clears away the confusion and misunderstanding most people have about UHF. Written in clear, easy-to-understand terms, this book covers both fundamental theory and practical, working applications with special emphasis on television. Present-day brand name converters-UHF test equipmentcircuit components - tubes, etc. Here is profitable and practical reading for anyone who will be working with UHF for service bench, school or laboratory use. Typical chapters include: UHF Receiving Antennas; Electromagnetic Radio Waves; Transmission Lines; Waveguides. Illustrated and indexed with approx. 400 ( $51 / 2 \times 81 / 2^{\prime \prime}$ ) pages bound in cloth cover.
$\$ 6.60$
Buy these books now at your jobbers . . leading bookstores... or -



COMPARE THESE EXCLUSIVE FEATURES!
 quick extension in any direction.
(6) Easy-to-attach lead-in wire with lugs.

EXTRA! Mention this ad at your nearest FEDERATED Supply Center to obtain 10 antennas for $\mathbf{\$ 1 2 . 5 0}$. Cash in on this money-saving offer now!


- New York City 7, N. Y., 66 Dey St.,
- Newark, N. J., 114 Hudson St
- Allentown, Pa., 1115 Hamilton St.
- Easton, Pa., 925 Northampton St.,
- Los Angeles 15, Cal., 911 So. Grand Ave.

The only Antenna at
this price with all these features -

Act and Save NOW . . . They're moving fast!



RADIO.ELECTRONICS

Dr. John Ruze joined the Gabriel Laboratories, Division of The Gabriel Co., Needham Heights, Mass., as director of research. The laboratories provide research and development facilities in


Dr. J. Ruze
assistant director Laboratory. the electronics field to other Gabriel divisions, including Ward Products and Workshop Associates. Dr. Ruze comes to Gabriel from the Air Force Cambridge Research Laboratories where he was of the Antenna
A. L. Champigny was promoted to supervisor of replacement sales promotion for General Electric's Tube Department in Schenectady, N. Y. He will direct the promotion of G-E tube sales through distributors. He was formerly promotion service super-
 visor for the company's Large A. L. Champigny Motor and Generator Department.

George Gemberling was named Western

G. Gemberling
a-half years.
Dr. James W. MclRae, vice-president of Bell Telephone Laboratories, was elected president of the Institute of Radio Engineers for 1953. He succeeds Dr. Donald B. Sinclair of the General Radio Co. S. R. Kantebet of the Government of India Overseas Communications suc-


Dr. J. W. McRae ceeds Harold L. Kirke as vice-president of the I.R.E. Stuart L. Bailey, of Janskey and Bailey, and B. E. Shackelford of the RCA International Division were elected I.R.E. directors for 1953-1955.

Mike Meyers joined RMS (Radio Merchandise Sales) New York City, as chief field engineer. He will assist distributors and service technicians with antenna problems and help conduct the RMS technical forums now being given throughout the country. Meyers

M. Meyers has had wide experience in the field

## great TV news! <br> Pringe Seam Highest POWER-gaIN Antenna ever!

## 10 Element Yagi with

* $100 \%$ more power gain than an 8 element yagi $\star 75 \%$ more power gain than usual 10 element yagi $\star$ Fringe-Beam gives HIGHEST POWER regardless of number of elements
Extensive tests . . . under all conditions; in FRINGE, near fringe and primary areas-in the North, South, East and West-conclusively proved that Fringe-Beam outgains any antenna. It's beyond comparison with any in today's market.
Leading installation companies, dealers and servicemen recommend the Fringe-Beam 10 element yagi with full confidence. Customers are grateful.



## EXCLUSIVE FEATURES:

a Low standing wave ratio, 1.1 to $I$ or less Excellent pattern and front-to-back ratio for nearperfect match to 300 ohm line

- Free stacking bars
- Boom broced on both high and low chonnels
- Lightweight, well constructed with seamless tubing, plated screws and nuts with high grade Micarta for low loss insulation. Well balanced. good appearance
- Pre-assembled for fast, easy installation. All elements crimp at ends
- Guaranteed
- Excellent profits
- Assures satisfied customer

4-element dipale with large area presents
low $Q_{i}$ maximum pick-up and brood low $Q_{i}$ maximum pick-up and brood response for both picture and sound

- $95 \%$ power gain over a single bay when antenna is stacked

Fringe-Beam
10 Element Yagi

JOBBERS-REPS! Some major territories available.
Get complete data; volume sales and unusual profits!

## NEAL ELECTRONIC CO.

# Now JSC Announces . . . Expanded 300 Ohm TV Lead-in Wire Line! 



JSC proudly announces a complete range for:

| 22 gauge copper | $\mathbf{2 0}$ gauge copper |
| :---: | :---: |
|  | 40 mil |
| 55 mill | 55 mil |
| 70 mil | 70 mil |
| 80 mil | 80 mil |
| 100 mil | 100 mil |

4-Conductor Rotor Wire
Perforated 300 Ohm Open Wire
JSC has highest quality wire at lowest possible prices.
Lithographic spools of orange and blue individually packed 1000 feet to the metal spool.

See your nearest JSC distributor who proudly displays the Blue and Orange disc of quality.

## SERVICE TECHNICIANS

What was your most unusual service case? Not necessarily the most difficult one, but the one you will remember longest, either because of the problem itself or because of other conditions surrounding the job. If the experience was interesting to you, it probably will be to other readers of Radio-Electronics. We will pay $\$ 10$ for each "My Most Unusual Service Job" item we consider outstanding enough to publish in this magazine. If the item is striking enough or carries sufficient technical information to be worth more than $\$ 10$ in our opinion, it will be paid for at our regular space rates. Address your stories to

Unusual Service Job
RADIO-ELECTRONICS
25 West Broadway
New York 7, N. Y.

#  Especially Designed for the ELECTRONICS Industry 



Steel is Finished in Polymerized Shock-Proof Insulating Enamel.

Equipto's especially designed Electronics Equipment is used by thousands of the country's largest radio, television and electrical service shops and stores. Combining strongest possible construction with moderate prices, even the small budget shop can take full advantage of Equipto's complete line of storage and work shop equipment.

Merchandise displayed on Equipto's well-styled units always boosts sales. These units give better than ONE-THIRD more display and storage space for items now occupying the same area. Have you a storage or display problem?

We'll be glad to help you.


## shoot T】 trouble

 FAST!
## With H. G. Cisin's Copyrighted RAPID

 "TV TROUBLE SHOOTING METHOD" Without experience or knowledge, this guaranteednew method of servicing TV sets enables you to DIAGnew method of servicing TV sets onables you to DIAG-
NOSE TV troubles as rapidy as an expert. NO THEORY-NO MATH-you can locate all faults in record-breaking time, regardless of make or model. "'TV TROUBLE SHOOTING METHOD' most valuable aid to TV servicing evcr written. Be a TV Trouble Dlagnostician. Increase your present earnings. Open your own
it's all in this book.
Nothing more to Pay-Nothing else to Buy Alphabetically listed, there are 85 picture troubles. over 58 raster and 17 sound troubles and by this WHERE the trouble is; plus sten-by-step instructions, including 69 RAPID CHECKS, enabling you to find the faulty part.
I3 IMPORTANT PRELIMINARY CHECKS NEED NO INSTRUMENTS! Of the G9 Rapid Cheeks, OVER
65 ALSO REQUIRE NO INSTRUMENTS! Rapid checks inelude emergency checks for distorted pictures, defectise tubes including PIX tube, plus 57 others. ALL EXPLAINED IN SIMPLE LANGUAGE; PERFORMED WITHOUT INSTRUMENTS, MANY CH Cisin. the author is the inventor of the AC/DC H. G. Cisin. the author, is the inventor of the AC/ De
mldget radlo. Me licenses RCA, AT\&T. etc. He has also trained thousands of technictans now owning their own prosperous TV service organizations or holding highly paid TV positions. His years of experience are embodied in thls re
THOUBLE SHOOTING METHOD
Guaranteed, Money Back in 5 Days if Not Satisfled! If you use coupon below you will receive,
ABSOLUTELY FREE, a copy of H . G. Cisin's new book "TV Terms Simply Explained SI ACT Now and get both books post-
paid at the cost of only one.
H. G. CISIN, CONSULTING ENGINEER, (Dept. E-17) 200 Clinion Street, Brooklyn 2, N. Y

- Name
Adares
Adares
City,

manufactured by
Peirma-Powerconnany
Chicago 25, Illinois
Manufacturers of Electronic Equipment Since 1928
of radar installation and television during the past 16 years.

Earl Kirk was promoted to distributor sales manager of the Regency Division of I.D.E.A., Indianapolis, Ind., manufacturer of boosters, converters, and other electronic equipment. He was formerly assistant sales manager. At the same time, Richard W. Mitch-
 ell, sales manager, announced that Edward M. Sheridan had joined the company as industrial sales manager. Sheridan was formerly with RCA

## Personnel Notes

Brigadier General David Sarnoff, Chairman of the Board of the Radio Corporation of America, was named by the U.S. Department of Defense to head the Citizens Advisory Commission on Manpower Utilization in the Armed Services.

Tom Cox, long associated with the electronics industry in sales and engineering positions, joined National Union Radio Corp. as district manager for the Renewal Sales Division in the New Jersey and Eastern Pennsylvania territory.
.. Harris D. Myers and Elmer G. Flood joined the Sound Equipment Division of Stromberg-Carlson, Rochester, N. Y,, as field engineers. At the same time, A. L. Sebastian and Henry A. McMichael joined the company as sales engineers in the Sound Equipment Division. All have had wide experience in the field.

Charles Maechling, Jr., was appointed government relations officer of the RTMA. He was formerly in the Office of the General Counsel of the Department of the Air Force. The association also named Stanley H. Manson of Stromberg-Carlson as vice-chairman of public relations on the RTMA Public Relations and Advertising Committee. He succeeds James M. Toney, who resigned after being assigned to a new position within RCA.

Dr. Allen B. Du Mont was re-elected president of Allen B. Du Mont Laboratories. Other officers re-elected were Stanley F. Patten, vice-president; Paul Raibourn, treasurer; Bernard Goodwin, secretary, and Irving Singer, assistant treasurer.

Edward Porter Robinson was promoted to plant manager of the ESPEY Manufacturing Co., New York City.

Dr. Francis M. Wiener joined Spen-CER-Ken nedy Laboratories, Cambridge, Mass., as section head in the Engineering Department. He was formerly with Bell Telephone Laboratories.
. . . Leon Marshall, who formerly oper-
ated his own art service, joined Insuline Corp. of America, Long Island City, N. Y., as assistant to Alfred S. Chambers, advertising manager.

Reinhold W. Schmidt was promoted to manager of Equipment E'ngineering and Maintenance of the Cathode-Ray Tube Division of Allen B. Du Mont Laroratories.
F. Sumner Hall, of Audio Equipment Sales Co., was installed as fifth president of the Audio Engineering Society. Other officers include: Jerry B. Minter, Measurements Corp., Executive vice-president; Walter S. Pritchard, Ohio Bell Telephone, Central vice-president; Richard L. Burgess, Allied Record Manufacturing Corp., Western vice-president; C. J. LeBel, Audio Instrument Co., secretary; and Ralph A. Schlegel, WOR Recording Studios, treasurer.
... Dan D. Halpin, general sales manager of the Receiver Division, Allen B. Du Mont Laboratories, was elected an Honorary Life Member of the Radio and Television Executives Society. He was so honored as a past president of the American Television Society which with the Radio Executives Club merged into the new organization.

Frank Toler joined the HalliCrafters Co., as district sales manager with headquarters in Nashville, Tenn. He was formerly with Tempco, Inc.

Abraham Hyman, formerly the supervisory electronic engineer for the Civil Aeronautics Administration in New York, joined JFD Manufacturing Co., as an electronic consultant.

Donald N. Kirkpatrick was appointed chief engineer of the National Co., Malden and Melrose, Mass., manufacturer of communication radio receivers, electronic equipment and components. He formerly held a similar position with Boonton Radio Corp.

Edward A. Malling, a former sales manager on the staff of the General Electric Receiver Department, was appointed manager of marketing for the Components Department.
. . . R. Gordon Dougherty, a veteran of the action in Korea, joined I.D.E.A., Indianapolis, as a field representative of the Regency Division. Before entering the service, Dougherty was a sales representative for I.D.E.A.
... Marshall A. Williams was appointed regional manager of the Government and Industrial Division of Philco Corp. with headquarters in the Beverly Hills office. He was formerly with Hughes Aircraft.
… Eugene M. Keys was elected executive vice-president and director of sales of Edwin I. Guthman \& Co., Inc., Chicago. He was also appointed a member of the Board of Directors. Keys was formerly vice-president in charge of sales.

END


## TECHNICAL APPIIANGE CORPORATION SMERBURNE, N. Y.

## TV Receiver Sensitivity <br> Measurements made Simple with

The New "SellsilMeter"* Portable

FULL DETAILS AT YOUR DISTRIBUTOR
to the
ELECTRICAL
ENGINEER
or
PHYSICIST
with experience in
with experience in

## RADAR

or
ELECTRONICS

Hughes Research and Development Laboratories, one of the nation's leading electronics organizations, are now creating a number of new openings in an important phase of their operations.

Here is what one of these positions offers you:

## THECOMPANY

Hughes Research and Development Laboratories, located in Southern California, are presently engaged in the development and production of advanced radar systems, electronic computers and guided missiles.

## THE NEW OPENINGS

The positions are for men who will serve as technical advisors to government agencies and companies purchasing Hughes equip-ment-also as technical consultants with engineers of other companies working on associated equipment. Your specific job would be essentially to help insure successful operation of Hughes equipment in the field.

## THE TRAINING

On joining our organization, you will work in the Laboratories for several months to become thoroughly familiar with the equipment which you will later help users to understand and properly employ. If you have already had radar or electronics experience, you will find this knowledge helpful in your new work.

## WHERE YOU WORK

After your period of train-ing-at full pay - you may (1) remain with the Laboratories in Southern California in an instructive or administrative capacity, (2) become the Hughes representative at a company where our equipment is being installed, or (3) be the

Hughes representative at a military base in this country or overseas (single men only). Compensation is made for traveling and moving household effects, and married men keep their families with them at all times.

## YOUR FUTURE

In one of these positions you will gain all-around experience that will increase your value to our organization as it further expands in the field of electronics. The next few years are certain to see large-scale commercial employment of electronic systems. Your training in and familiarity with the most advanced electronic techniques now will qualify you for even more important future positions.

How to apply:

## HUGHES

RESEARCH AND
DEVELOPMENT LABORATORIES
Engineering Personnel Department Culver City,
Los Angeles County, California

If you are under thirty-five years of age, and if you have an E.E. or Physics degree, write to the Laboratories, giving resumé of your experience.

Assurance is required that relocation of the applicant will not cause disruption of an urgent military project.

Radio-Electronics Annual Index

| Volume XXIII Oct. 1951 . | - Dec. 1952 |
| :---: | :---: |
|  | date page |
| A |  |
| AIRCALL | Oct. 5174 |
| AMATEUR |  |
| Bedside control unit | Oct. 5186 |
| Codetyper | May 5268 |
| Crystals, uses for | Apr. 5257 |
| Frequency spotter, crystal | Jun. 5251 |
| Key, electronic | Oct. 51105 |
| From standard "bug" | Oct. 5188 |
| Modulator, clamp-tube | Jun 5252 |
| Manitar, phone-c.w. | Jan. 52126 |
| Oscillators |  |
| Crystal-controlled | Dec. 5150 |
| Test instrument, multipurpose | May 5253 |
| Vorioble-frequency oscillator | Dec. 5168 |
| Vorioble-frequency, beginners | 5Feb. 5266 |
| Receivers-See also <br> Receivers, communications |  |
| Bond switching | Mar. 5284 |
| Improvements for 160 meters | Dec. 5284 |
| Preselector for | Jul. 5253 |
| Television interference |  |
| 21-mc | Jul. 5229 |
| Filters for | May 5244 |
| Service tech and | Jul. 5234 |
| Transmitters |  |
| Novice | Jul. 5257 |
| Ten-watt, compact | Dec. 5260 |
| Transmitter-receivers |  |
| Ten-meter, pack set | Oct. 5294 |
| No. 19, Mark II, conversion | Nov. 5185 |
| MPLIFIERS-See also Audio |  |
| Magnetic | Jun. 5256 |
| Wide-band chain type | Feb. 5262 |
| ANTENNAS |  |
| Beyond-fringe | Mar. 5227 |
| Discone | Nov. 5139 |
| Dummy, for servicing | Jun. 5235 |

TV antennas-See Television
AUDIO
Amplifiers
3-channel Dec. 5127
8-watt
Feb. 52110
100-watt
Nov. 51.70
Cathode-follower Sep. 5272

Constant-voltage output Feb. 5244
system
Direct-coupled
Dec. 5233
General-purpose Mar. 5240
Grounded-grid Oct. 5246
Limiting, RCA BA-6A Oct. 5158
Miniature
Mixer, 4-channel
Aug. 5273
Apr. 5239
Preamp, mixing, 4-channel Dec. 5128
Phonograph, transformer- May 5258 coupled
Remote-controlled
Response checking with
sawtooth wave
Response variation
Revamping with feedback Synthetic bass circuit Williamson
Bridge circuit uses
Design, push-pull drivers
Distortion
Intermodulation test standards
Meter
Phase-shift, meter
Jan. 5286
Nov. 5236
Mar. 5236
Oct. 5140
Jan. 52143
Jul. 5246
Nov. 5278
Dec. 5236
Oct. 5170
Dec. 5134
Aug. 5242
Dec. 5230
Oct. 51102
Feb. 5225
Apr. 5229
Dec. 5143
Oct. 5142
Nov. 5178
Jul. 5290
Nov. 5234
Jul. 5243

## NEW LOW COST <br> TELESCOPING TV ANTENNA SUPPORT

Wincharger
Applied For tower, presents a HIGH QUALITY, RUGGED, DURABLE TV Antenna Support Masts at a budget price. Properly guyed, these masts will support large antenna arrays against high winds and heavy ice loads.


Fiste

## Exelusiue 3-Paint SAFETY CLAMPING RING

ing surface, provide maximum rigidity against tubes twisting and loosening inside each other due to high vinds. Aids in erectin straighter mast.
AUTOMATIC SAFETY CLIP
Assembly Tool. Snaps in place with a "click" warning that tube has been pulled out as far as it can safely go. Made of heavy-gauge spring steel wire. This charger safety feature
A WINCHARGER BASE FOR EVERY TYPE ROOF

Hinged Foot for flat and sloping roofs

Ridge Straddler ... tor use on broad or ridged roofs, such as tile, etc.

Ridge Straps
simple mounting where there is no ridge roll to bridge.


Sell Mincharger
SAFETY and FASTER, EASIER INSTALLATION. Sell WINCHARGER

TELESCOPING TV ANTENNA SUPPORT MASTS

Order now from your jobber-

## WINCHARGER <br> CORPORATION

sIoux city 2, Iowa

Inductors for
Corner
Folded horn
Plaster, French
Eggshell diaphragm for lonophone
Circuitry for lonophone Mixer, cathode followe Mobile demonstration unit Musical instruments, electronic Boldwin organ

Consonnata
Construction hints
Hammond organ
Lowrey Organo
Minshall organ

Solovox
date page
Nov. $52 \quad 32$
Oct. 51108
Feb. 5211
Aug. 5241
Oct. 5251
Nov. 5144
Dec. $51 \quad 33$
Nov. 5140
Oct. 5250
Nov. 5160
Dec. 5130
Jon. 5276
$\begin{array}{lll}\text { Mar. } 52 & 38 \\ \text { Sep. } & 52 & 48\end{array}$
Oct. 5144
Apr. 5232
Jun. 5244
Jul. 5248
Aug. 5244 May 5256
Noise Neutralizer-See Fiction
Noise suppressors, automatic
Oscillotors-See Audio Signal
Output meter
Phonograph
Oscillator, FM
Records, playback curves Improved fidelity for
portable
Quality factors in
Recorders, tape
Mechanical maintenance
Professional models
Recording
Film-C-R tube method
Tape
Reverberator, artificial
Sales demonstration room
Signal generators
41-10,000-cycle, R.C
Beat-frequency
Calibrating
Square-wave
With calibrated output
Vacuum-tube voltmeters
Sensitive
Uses
volume expander
Waveform analysis
B
Blasting caps, radio detanation ofDec. 5249 Bismuth magnetic phenomena Nov. 5I 41 BROADCASTING AND
COMMUNICATIONS
Maintaining two-way radio
Studio equipment, operation
TV news program
Mar. 5246
Apr. 5270
Feb. 5252
Mar. 5254
Sep. 5261
C
Carrier-current telephone system Nov. 5I 78 Cathode followers

Sep. 5272
Codan-See Recbivers COMPUTERS
Counter, flip-flop
Mechanical squirrel
SEAC
Nov. 5258
Dec. 5146
Oct. 51 43
CONSTRUCTION—See also
ndividual heads, Receivers, etc.
Chassis, breadboard,
May 5294 experimental

Nov. 5292
CONVERSIONS, LARGE-SCREEN TV
Details
Last word on
630 to 17 inches
RCA 9T-270
Set with r.f. power supply
Crossover networks-See Audio CRYSTAL DIODES
In ring modulator
Photodiodes

COMPLETE TRAINING FOR BETTER RADIO-TV SERVICE JOBS


Let these two great new Ghirardi training books teach you to handle all types of AM, FM and TV service jobs by approved trofessional methods-and watch your efficiency and earnings soar!
Completely modern, profusely illustrated and written so you can easily understand every word, these books pave the way to fast, accurate service on any type of home radio-TV-electronic equipment ever made. Each book is brand new. Each contains the latest data on the latest methods and equipment-NOT a re-hash of old-out-of-date material. Each is co-authored by A. A. Ghirardi Whose famous RADIO PHYSICS COURSE and MODERN RADIO SERVICING were, for 20 years, more widely used for military, school and home

## THE NEW Ghirardi

RADIO-TV SERVICE LIBRARY
Almost 1500 pages and over 800 clear illustrations sho step. by-atep how to handle every phase of modern trouble

## 1-Radio and Television Receiver

 TROUBLESHOOTING \& REPAIRthe novice, it is a comprehensive training course. For the experienced serviceman, it is a quick way to "brush up" fast answers to puzzling service problems. Includes in valuable "step-by-sted" service charts. 820 pagea, 417

## 2-Radio and Television Receiver <br> CIRCUITRY AND OPERATION

This 669-page volume is tha ideal gulde for servicemen radio-TV receivers "tick" and why. Gives complete pin derstanding of basic circuits and circuit variations; how ond recognize then at a glance: how to eliminate gueses.ork

## New low price . . . easy terms

Ouv roken mio leason form and sent to you as a "courbe more! Together, they form a comnolete modern serpictng library to help you work faster and more profitably com letely indexed so you can look up needed facts In a ilffy Under this new offer, you save 75c on the price of the (stallments while you use theml No lessons to walt for.

## 10-DAY EXAMINATION PRIVILEGE


Technical Disision,
232 Madison Ave., New York 16, N. Y
Send me GHIRARDI'S NEW 2-VOL. SERVICE
LIBRARY. I encloge $\$ 3$ and will send rou $\$ 3$ mect - for three months until the total price of only $\$ 12.00$ plus a fow cents postage is paid. It is understood I I may read the books for 10 dnys. Then, if not satispacrefund my 33 and cancel the remaining installments. (Books shipped postpaid if full remittance accompanies order. same return privilege.)

Name

## Address

Clty, Zone. State
Employer's Name \& Address-_-_
outSIDE U.S.A.- $\$ 13.00$ eash only, Same

can you tell...

which transformer is the RAM?

If you cant tell any difference between the original and replacement flyback these days, there's good reason. They're TWINS-they're BOIH RAMS!

Yes, the great majority of famous TV set manufacturers order their original flyback built to their own specifications by RAM. They know that a RAM-built original surpasses their every quality and performance standard.
Under the special RAM twin-transformer manufacturing technique, in most instances the originals destined for the TV set maker and the replacements destined for the RAM-brand and your jobber's shelf are both made at exactly the same time, during the identical production runt

That's why you can be certain-9 times out of 10 -that a RAM-brand replacement is the best replacement, for highest efficiency and durability. And that's why RAM components are lowest-priced in the industry, for highest profits for you. ONLY RAM manufactures 29 types of transformers, 10 types of deflection yokes and 15 types of linearity and width coils -the industry's most complete, most diversified sweep replacement line. See them at your local distributor.
FREE! RAM 1953-edition Replacement \& Conversion Manual-over 5000 sweep component listings-most complete in the industry. Write Dept. RE-1.


## OAK RIDGE CRT TESTER



## "6ATHETTE"

is the ONLY CRT tester*
that checks ALL the following:

- HIGH VOLTAGE BREAKDOWN
- bEAM CURRENT MEASUREMENT
- ELECTRON GUN CONDUCTANCE
- SHORTS BETWEEN ANY ELEMENTS

Ask to see this INDISPENSABLE new tool at your nearest jobber. You'll agree that it's a MUST for every TV Serviceman today! MODEL 106 'CA.


Check these additional patented features:


## OAK RIDGE PRODUCTS

OAK RIDGE PRODUCTS, Dept. RE-I
I 92 -15 172nd St., Jamaica, N. Y
I Please send your complete new OAK RIDGE Catalog at once, to
$92-15$ 172nd Street • Jamaica, N. Y.
Mfg. Div, of VIDEO TELEVISION INC. City

Replacing tubes with
Crystals, quartz, calibrating
Oct. $51 \quad 60$ Apr. 5257

DIATHERMY -See Electronics DISTORTION-See Audio

EDITORIALS
Service Technicians' Evolution Oct. 5121
Radio-Electronic Giant Nov, 5123
Is the Vacuum Tube Doomed? Dec. 5123
Television at the Crossroads Jan. 5225
Television Servicing Feb. 5221
Microwave Evolution Mar. 5221
Anti-Collision Cars Apr. 5225
Ga Electronic, Young Man! May 52.29
1,945 New Television Stations Jun. 5225
53 Million TV Sets by 1960 Jul. 5225
Electronic Brains Aug. 5221
Status of European Television Sep. 5227
Our Electronic Universe Oct. 5229
Magnetic Tape TV Recording Nov. 5229
How to Enter the Electronic Dec. 5229 Industry
ELECTRONICS-See also
Industrial Electronics
Bismuth in mognetic fields
Cosmotron
Counting rate instrument
Door controller, automatic
Flasher, saturated-core
Garage door opener
Nov. 5141
Oct. 5244
Jan. $52 \mid 25$
Jul. 5255
Dec. $52 \quad 62$
Oct. 5150
Magnetic amplifiers
Jun. 5256
Medical-See also Ultrasonics
Diathermy machine
Relaxacisor
Organs, electronic-See Audio
Roin detector
Sep. 5258
Nov. 5249

Tachometer, Rotalyzer
Apr. $52 \quad 62$
Dec. 5275
Timer, long-interval Jan. 52119
Timer, radio, long-period Aug. 5248
Switch, sound-operated Apr. 5236

FICTION
Noise Neutralizer
Pedro and the Incentive Plan
The Pest
The Toughest Customer
Apr. 5252
Mar. 5232
Jul. 5242
FREQUENCY
Divider Jan. 5244

Meters-See Measurements
Spotter, crystal
Oct. 5178

FREQUENCY MODULATION
British test results
Jun. 52 51

Receivers
Feb. 5349
Gated-beam discriminators, Oct. 5272 aligning
Glow-lamp applications
May 5282
INDUSTRIAL ELECTRONICS
Flame control
Feb. 5258
Hammer, electronic
Painting, electrostatic
Precipitator, electrastatic
Precipitators, inexpensive
Recorder, Servograph
INTERCOMS-See Audio L
LOUDSPEAKERS—See Audio
M
Magnetic phenomena (bismuth wire)
Mathematics, Boolean algebra Dec. 51 46 In electronic design

Feb. 5255
MEASUREMENTS AND METERS
Audio-See Audio
Capacitance checker
Meters-See also Audio
Application in home-built
Apr. 5244
instruments
Brightness
Field-strength, television
Frequency, $0-50 \mathrm{kc}$
Grid-dip
Milliampere, multirange
Multimeter, electronic
RADIO -EL
 CMLOCA
CATALOC
AN ESSENTIAL
BUYING GUIDE
for Every RADIO
\& TVSERVICEMAN!
featuring:

- GREYIOCK TUBES, al new low prices!
- Standard brand tubes, tremendous values!
- complete stocks of standard brand lines

| IMSTRUMENTS | B00ks | OTMER TOP BRAMDS |
| :---: | :---: | :---: |
| E1CO | Howard Sams | C-D Vibrators, Converters |
| Jackson | Rider | - Antenna Rotators |
| EMC | Coyne | Merit Iransformers |
| Oak Ridge | Editors a Engineers | Sprague Condensers |
| hardwart, T00LS | RADIOS, SOUND | GE Lamps |
| ICA | EQUIPMENT | Secolon Heedles |
| Walse | Penifron | Shure Microphones RMS |
| Jackon trons | Bogen Challenger | RMM Antennas, Accessories |
| Phillips Guns | Atlas Sound | Electrovice Burgess Batteries |
| $x$ xelelite | Steelman Phones Gen'l industries | Burgess Batteries Quam. Nichols 5 |
| Eby | Gient industries | Regency Boesteathers |

GREYLOCK 115 Liberty St., N. Y.
Phone BE 3.0224

[^14]
## Multitest <br> Ohm, Edison-effect type Ohm, open-scale <br> Volt, r.f., sensitive <br> V.t.v.m., audio <br> V.t.v.m. low-cost

mobile radio
Base transmitters, remote control of
Equipment, maintenance Interference suppression in Maintaining twoway
Servicing two-way
Servicing, universal tester for V.t.v.m. in

TV service unit
Model control, plane MUSICAL Jun. 5248 See Audio

ORGANS, ELECTRONIC-See Audio OSCILLATORS

Audio-See Audio
Harmonic, crystal-controlled Dec. 5150 Transistor, crystal-controlled Apr. 5256 Variable-frequency-See Amateur Output meter-See Audia; Mefers

Photodiode, subminiature POWER SUPPLIES

Regulated
$250-400$-volt, $150-\mathrm{ma}$
300 -volt, $200-\mathrm{ma}$
Vibrator circuits
Voltage regulation
Of r.f. supply
Production-type tube checker
Radio control, nodel plane
Reactance
RECEIVERS-See also Amoteur Fixed-tune broadcast /ROK One-tube
Three-tube, superheterodyne
A.g.c. for, suppressor type

Bandspread circuits
Battery, power conservation
Codan circuits for
Communications
B.f.o. trouble in

Variable-selectivity i.f. for

## Crystal

Miniature, superregenerative, Aircall
Motorola plated chassis
Pilot light addition to
Push-button tuner for
Regenerative bandswitching S-meter for
Squelch circuit for
WWV
Mar. $52 \quad 62$
Dec. 51 62
Apr. 5266
Aug. 5272
Oct. 5156
Nov. 5137
Aug. 5247
Sep. 5284
Aug. 5232

Jun. 5248
Nov .5272
Dec. 52. 78
Feb. 5278
Nov. 51107
Apr. 5255
Oct. 5255
Jun. 5238
Feb. 5232
Feb. 5286
Jul. 5241
Oct. 51 102
Mor. 5283
Oct. 52102
Oct. 51 74
Dec. 5244
Oct. 5270
Jul. 5252
Sep. 5256
Jun. 5245
Jon. $52 \mid 45$
Jul. 5258
RECORDERS-See Audio
Rejuvenator, TV tube-See Tubes
RELAYS
Capacitance-operated, for Oct. 5138 window display
Sensitive
Sound-operated
Resistors, making precision
Sep. 5257
Mar. 5297
Oct. 52 I22
Schools, selection of
S

## SERVICING

Bench for

With swing-out panel
Business management in
Carrying case for
High-voltage safety in
Instruments
$\begin{array}{llll}\text { Legal obligations of technicians } & \text { Feb. } & 52 & 22 \\ & \text { May } & 52 & 34\end{array}$
$\begin{array}{rlll}\text { Legal obligations of technicians Feb. } & 52 & 22 \\ \text { May } & 52 & 34\end{array}$
Feb. 5230
Mor. 5249
Apr. 52 4l
Oct. 5139
Sep. 5247
Dec. 5138
Oct. 5238

## Columbia

The Improved Deluxe TELEVISION Service Light!


Now ... with complete swivel for better lighting and easier servicing!
EVERY SERVICEMAN, experimenter, model-maker needs this handy item. No need to wark in the dark . . . ample light is provided by a $71 / 2$ watt, 110 volt bulb that remains caal at all times.
Scientifically-designed, unbreakable aluminum reflector directs maximum light to point of work

- A REAL TIME AND LABOR SAVER.

Wide opening spring clamp will hold firmly to sides of wherever it is attached to inside of TV cabinet. Rubber covering on clamp prevents scratching or marring of surface. Both hands are free to work with this service aid $\cdot$ HANDIER THAN A FLASHLIGHT.

Carried by leading jobbers!
Have you seen our other TV service aids . . ."TV Service Cord" and "TV Picture Tube Extension Cable"?

We manufacture cord sets
and cables to government
and civilian specifications.

Mabile equipment-See Mobile Nuisonce call elimination Receivers
Auto radios
Dummy antenno for
Gated-beam discriminators
Load meter use
Midget
Old, rejuvenation of
Pilot light servicing
Oscillators
Squeols
Tuning wand use Rolling toble for
Service-oid instrument Small shop advantages
Speoker. universol
Substitution box for
Television receivers Control troubles Brightness
Diagnosis of picture foults Fix-lt books
Flybock squeal
Hard-to-find troubles
High-voltoge circuits
Harizontal locks
In customer's home
Intercarrier buzz elimination Mobile shop
Picture tube replacement chart
TV receiver as signal tracer Vertical sync instability With simple instruments

Wheelchair shop SIGNAL GENERATORS—See Test Instruments: Audio

## $T$

TAPE RECORDERS-See Audio TELEVISION

Antennas-See also Antennas
Balancer for
V.h.f.-u.h.f.

Coupler, multi-antenna
Design formulas
Installation, indoor antennos
Manufacturer directory
Safe installation of
Master systems
Distribution amplifier
Transmission line tuner
U.h.f.

Ultra Q-Tee
Boosters
Chain amplifier
Commercial model list
Single-channel, low-band
Circuits, new 1952
For fringe reception
Dx. 1951 summary

Eidophor system
Eyestrain reduction
Ghost analysis
Interference
Filter for
I.f.

From police transmitters Military instruction with Motion-picture theater use
Network map
Prospects
Receivers
630-type
Sound improvement in
Screen size increase
Appearance improvement
Color
CBS-Columbia
Conversion to

Nov. 5248
Oct. 5284
Sep. 5254
Jun. 5282
Feb. 5237
Jan. 5260
Jan. 52116
Jun. 5234
Jan. 5247
Jan. 5254
Sep. 5242
Jan. 5234
Sep. 5266
Fob. $52 \quad 62$
Jan. $52 \quad 62$
Aug. 5225
Jan. 5230
Apr. 5246
Jan. 5240
Oct. 5234
Sep. 5232
Apr. 5245
Jul. 5234
May 5244
Feb. 5240
Oct. 5129
Jan. 5243
Mar. 5222
Jan. 5228
Jan. 5226
May 5230

## TELEVISION

8ig demand for graduates
B.S. DEGREE IN 27 MONTHS in rodio including TV engineering-VHF, UHF, AM and FM. Students use over $\$ 100.000$ worth of equipment including 2 large commercial type transmitters in new TV lab. Intense speciolized course includas strong basis in mothematics science and advanced design in radio and TV.
Hundreds of young men each year are earning engineering degrees in this recognized institution. Start any quarter. Many earn a mapor port of expenses in this industrial center. Low tuion. Comperent struction. Thorough. INense, 27 . Also B.S. DEGREE IN 27 MS. in Aeronautical, Chemical, Civil, Electrical ons Mechonicol Engihe ering. G.l. Gov approved. Enter morch. June, OLL NOW
INDIANA TECHNICAL COLLEGE
1713 E. Washington Blvd., Fort Wayne 2, Indiana
RADIO-ELECTRONICS

Commercial model directory date page Fringe-area performance of Jan. $52 \quad 48$ 1.f. amplifiers, $44-\mathrm{mc}$ Jan. 5238 lon burns on picture tubes Feb. 5234 Power supply, conversion to Oct. 52 flyback
RCA 9T-270, screen size May 5236
increase
Remote controls for
Retrace blanking in
Sales, home trials
Screen size increase

Servicing-See Servicing

> U.h.f. Converters
U.h.f. Reception

Studios
Equipment operation
Mar 5252
TEST EQUIPMENT-See also Meters, Audio Battery instruments, monitoring Jun. 5238 Crosshatch generatar, Nov. 5252
Telepacket
Frequency spatter, crystal Multitube checker
Picture tube onalyzer
Probe, compensated, for 'scope
Jun. 5251
Aug. 5232
Oct. 5236
Oct. 51106 Mar. 5228 Jul. $52 \quad 36$ May 5253
Signal generators |audio-See Multi-unit
Mulfivibrator type
Signal tracer, dynamic
Synchrascope conversion
Tester for mobile use
THEORY
Electronic flame
Filter design
Reactonce
Rectificotion with translatar circuits
Transmission lines
A.c.: simplified

Audio, constont-voltage
Tuned circuits, resistanceadiusted
AUDIO TRANSFORMERS
Vorioble line, uses
TRANSISTORS
Amplifier circuits
Circuit design
Future of
Oscillators, crystal-controlled Sawfooth oscillator TRANSMITTERS-See also Amateu

150-kw, Daventry
Marine, crystal-controlled
Remote control for

## TUBES

. 2050
6BN6, circuits for
Cathode-ray
Checker
Ion burns in
Reactivators, rejuvenators, testers
Replacement guide
Tube checker for 10 tubes
Replocement and substitution
Thyratron, battery-operated
TVI-See Televisian interference

ULTRASONICS
Bird removal by
Medical applications
Correspondence on

## V

Vibrators-See Power supplies
Volume expanders-See Audio
Valtage regulators-See Power supplies

## TRAIN AT HOME <br> ELECTRONIC DRAFTSMAN

Many Electronic Draftsmen needed im-

## ONLHE BATTERY RECORDER

WALKIE-RECORDALL ${ }^{3}$ ID. minialure BATTERY Continuous, permanent, accurate, Indexed recordtng
at only sc per nre. Instantaneous. permanent play-
back. Picks up sound up to bo fi. Perords cole back. Picks up sound up to 80 ft. Permanent playences, lectures, dictation. 2-way phone sales talks:
while walking. ridthe or fyly. Records in closed
briefcase with 'hidgen mike'in Wrte for detalls. MILES REPRODUCER CO., INC. 812 BROADWAYDent.RE-1 NEW YORK 3. N. Y. mediately by defense agencies and cantractars. Excellent pay. Pianeer radia engineer offers an original and exceptionally high class carrespondence caurse ta qualified ambitious young men and women. Details free.

## CHARLES ROLAND LEUTZ

P.O. Box 368, Silver Spring, Maryland


Just off the press! Do you have your copy? Available only at your local Cornell-Dubilier authorized jobber. For one nearest to you see your local classified telephone directory, or write to Dept. RC13, Jobber Division, CornellDubilier Electric Corporation, So. Plainfield, N.J.
listing
1,192 MODELS, 76 MANUFACTURERS. 390 CAPACITORS AND COMBINATIONS

## 


 here are 23 Triad Television Replacement items listed below. They will take care of $85 \%$ of your service needs. Always keep a supply on hand. They eliminate excessive inventories, speed servicing and simplify reordering. Your Triad jobber carries them in stock. Call him today.
DEFLECTION YOKES:

Write for Catalogs TR-52B and TV-52B

THE FUND TOPS $\$ 10,000$

## HELP FREDDIE-WALK FUND

We continue to receive encouraging reports from Herschel Thomason, radio technician of Magnolia, Arkansas, on the progress of his four-year-old son, Freddie, who, as most of our readers know, was born without arms or legs. Freddie's courage and patience seem unending, and his father's latest letter tells us that he "is walking better every day, although he still needs a little help for his forward motion. We feel sure that when his legs are readjusted he will be able to walk over any level surface by himself."

And there, in the word "readjusted," we have the crux of the matter--the main concern of the Help-Freddie-Walk Fund. For not only will Freddie be always dependent upon mechanical devices for the simplest acts that we more fortunate ones take so for granted, but for many, many year's these appliances will have to be constantly adjusted and readjusted to meet Freddie's growing needs.

Although the Fund has reached a grand total of over $\$ 10,000$, many more thousands of dollars will be needed before we can consider our job well-done. We are most appreciative of the enthusiastic response from our readers during the past three years, and ask only that it be continued. At this time we would like to make special mention of a contribution of $\$ 2.00$ received from the Signal Corps Inspection Office, Hi-Q Division, Aerovox Corp., Olean, New York.

We urge each and every reader to "start the New Year right" by sending in a contribution-large or small-to this worthy cause. Make all checks, money orders, etc., payable to Herschel Thomason. Address all letters to

HELP-FREDDIE-WALK FUND
c/o Radio-Electronics Magazine
25 West Broadway
New York 7, New York

## FAMILY CIRCLE CONTRIBUTIONS

Balance as of October 20, 1952 ...\$571.50 FAMILY CIRCLE Contributions as of
November 17, 1952 ........... $\$ 571.50$
RADIO-ELECTRONICS CONTRIBUTIONS Balance as of October 20, 1952 ...\$9,571.47 Anonymous, Cambridge, Mass. .... 1.00 Arthur Chretien, Methuen, Mass... 1.00 Joseph T. Corrigan, New York, N. Y. 5.00 Vernon C. DeWerff, Morrisonville, Illinois
5.00

Alvin J. Jacobson, Williston, N. Dakota $\quad 2.00$ Mr. \& Mrs. Thos. F. Maloney, Arlington, Virginia
Clodovaldo Rossetto, Sao Paulo, Brazil Signal Corps Inspection Office, $\mathrm{Hi}-\mathrm{Q}$

Division, Aerovox Corp., Olean,
New York
2.00

RADIO-ELECTRONICS Contributions as of November 17, 1952......\$9,591.47 FAMILY CIRCLE Contributions .. 571.50 TOTAL CONTRIBUTIONS as of No

[^15]

For Rural Areas, Hotels, Commercial Steamers, Ball Parks, Etc. U. S. NAVY Type PAE-1 Electric Megaphone equipment is designed for voice reinforcement in much the same manner as, but to a greater degree than, the
faniliar acousis megaphone consists of Meyaphone
Unit (w)ich combines a microphone anind reproducer in Unit (which combines a microphone and reproducer In
a single assembly), Portable Amplifier which electria single assembly, Portabe Amplifier which electri-
cally anilifes the output signal of the microphone
section of the megaphone and feeds this amplified section of the megaphone and feeds this amplified
signal to the reproducer section. Charging Rack for re-
clarginy charging the seprfcotitained slorage bettery of the pori-
athe amplifer. BRAND NEW-A TREMENDOUS VALUE! DEMONSTRATION GIVEN AT EITHER OF $\mathbf{S 1 4 9 . 5 0}$
FLATTSSTOES .

|  |  |  | $0$ |
| :---: | :---: | :---: | :---: |
|  | EXCELLENT |  |  |
| RECEIVERS | USED |  |  |
| BC-453-190 to 550 KC | \$22.95 |  | \$49.95 |
| BC-454-3 to 6 MC |  | \$12.95 | 19.95 |
| BC-455-6 to 9 MC | 9.95 | 11.95 | 95 |
| TRANSMITTERS |  |  |  |
| A-958-2.1 to 3 MC |  |  | 29 |
| 13C-458-5.3 to 7 MC | 7.95 | 9.95 | 17.95 |
| ARC5-T-19-3 to |  | 24.95 | 34.95 |
| BC-459-7 to 9.1 MC |  |  | 24.95 |
| T-15 AllC 5-500 to 800 |  |  | 29.95 |
| ADDITIONAL EQUIPMENT |  |  |  |
|  | 2.49 | $\begin{array}{r}2.95 \\ \hline 1.95\end{array}$ | 2.95 |
| BC-451 Control Hox (Transmitter) | 1.29 | 1.79 | 2.39 |
| BC-442 lelay Unit (ANT) | 2.39 | 2.89 | 3.69 |
| Plugs: 1'L-147, 148, 151, 152, 153, 154. 156-EACH |  | 1.25 |  |
| Flexible Slafting with gear to fit recelvers |  |  | 2.69 |
| 3 Receiver Hack | 1.79 | 2.29 | 2.98 |
| Single Transmitter Hack ......... |  |  |  |
|  |  |  |  |
| DM-32 Dynamotor for Command Set |  | 3.95 | 5.95 |
| DM-33 Dynamotor for Command Set $\quad 2.95 \quad 3.95$ |  |  |  |
| Relay Unit ............... | Mounts Mor Rack Modulator, \& Antenna |  |  |

LIMITED QUANTITY
COMMAND SET BC-455-6 to 9.1 mC . Excellent. $95 \%$ completely wired-a few minor parts inctuded reque
assembling. Instructions included. ONLY $\mathbf{\$ 6 . 9 5}$ COMMAND TRANSMITTER-Navy and Army type-3 to
4 MC
$75 \%$
TROMPlete spare parts-LIMITED $\mathbf{8 . 9 5}$

PLATT ELECTRONICS CORP.
Dept. B, 489 Broome St., N. Y. 13, N. Y.
PHONES: WO 4-0827 and WO 4.0828
BRANCH STORE: 159 Greenwich St., N.Y.C.

## REMOTE-CONTROL PROBLEM

## Dear Editor:

In reply to Mr. Waelder's switching problem in the October issue of RadioElectronics, one solution is to mount chassis type a.c. outlets on the back of the tuner or control amplifier, and add an extra deck to the input-selector switch to feed 117 -volt a.c. to each unit in the corresponding switch position. The extra deck should be well separated or shielded from the audio-input deck to minimize 60 -cycle hum pickup. (The switch contacts must be heavy enough to carry the required a.c. loads.Editor)
I have used this system for a year and a half in a home-built radio-phono combination and it has given good results.

Leon Carter
North Charleston, S.C.
(Mr. Waelder asked for suggestions on automatically turning on and off a.c. power to various units (such as a phono turntable and preamplifier, separate $A M$ and $F M$ tuners, or a tape recorder), from an audio-control unit that has only a signal-input selector switch.-Editor)

## CRYSTAL-SET DX

Dear Editor:
The article about the super- dx crystal set in the October Radio-Electronics started me trying for a little dx myself. I didn't get around to trying the set described but I hooked up the circuit shown in the diagram on a breadboard, and lacking a regular antenna, used a 75 foot length of 300 -ohm ribbon line.


The first antenna coil I tried just didn't have the pep, so I wound one with No. 20 hookup wire and sat down to listen. Very faintly, I logged four stations between 7:30 and 8:00 pm. This was Oct. 16.
Still not satisfied, I tried half a dozen different coils-commercial and home made-with indifferent results until I happened to think about a battered loopstick that I had thrown on the shelf.

That was the answer-at least for dx . On October 18th, I picked up the following stations between $7: 00$ and 10:00 p.m., with unusual volume.

WLW-Cincinnati WWVA-Wheeling KDKA-Pittsburgh KYW-Philadelphia WGN--Chicago

WCFL-Chicago WENR-Chicago CBL-Toronto WGR-Buffalo WBZ-Boston WMAQ-Chicago

Toronto and Buffalo were both loud enough so that speech was understandable through a magnetic speaker.
I have listened to Toronto, Buffalo, and WBZ (Boston) with good headphone volume at all hours of the day the past two days. (I work nights!)

Francis E. De Groat
Salamanca, N. $Y$.


TECHNICAL INDEX selecting the proper loudspeaker SYSTEM ... METHODS OF CONNECTING SPEAKERS
TO THE AMPLIFIER Page 8

Includes both technical and product data in and product cotual, concise form with dozens of helpful explanatory photographs, charts and tables. Features much engineering information available NO. WHERE ELSE!


## FOR THE BEST COVERAGE

## IT'S THE NEW SECOND EDITION

## BETTER TV RECEPTION

 In fringe and low-signal areasHere's the book which has taken the failure out of many unsuccessful fringe area installations, and has improved the picture for many discouraged TV owners. Practical and easy to understand. How to reduce interference, minimize fading, eliminate "ghosts." How to choose the best boosters and receivers, transmission lines and antennas.
$\$ 2.50$ per copy (plus any tax)
FOR ADDITIONAL COVERAGE:
RADIO HANDBOOK, 13th edition ........ $\$ 6.00$ RADIOTELEPHONE LICENSE MANUAL ... 3.75 ANTENNA MANUAL
WORLD'S RADIO TUBES (Vade Mecum) SURPLUS RADIO CONVERSION MANUAL
in 2 volumes
Each volume


[^16]ELECTRICAL FUNDAMENTALS OF COMMUNICATION, Second Edition, by Arthur L. Albert. Published by Mc-Graw-Hill Book Co., 330 W. 42nd St., New York 36, N. Y. $6 \times 9$ inches, 531 pages. Price $\$ 7.00$.
This is a beginner's book in communication. It is clearly written and well illustrated. Interest is maintained by many numerical examples worked out in detail. Chapter summaries, review questions, and problems are provided at the end of each chapter.
The book starts with elementary principles of d.c. and a.c. Resistive, inductive, and capacitive circuits are analyzed and solved numerically. One chapter deals with measuring instruments of the d.c. and a.c. type.

More advanced material appears in the last half of the book. Impedance relationships, network theorems, transmission lines, and propagation are among the subjects discussed. One chapter is devoted to vectors and how to use them. This subject often proves difficult to nonmathematical readers, but it is clearly described here. Filter networks and bridge circuits are briefly covered.

The last few chapters discuss tube and crystal circuits, including oscillators, amplifiers, and rectifiers. The final chapter is on acoustics.

A five-place table of trigonometry functions appears in the appendix.-IQ

BASIC MATHEMATICS FOR ENGINEERING AND SCIENCE by Walter R. van Voorhis and Elmer E. Haskins. Published by Prentice-Hall, Inc., New York, N. Y. $51 / 2 \times 81 / 4$ inches, 619 pages. Price $\$ 7.65$.
This book is additional proof that mathematics can be interesting as well as useful. It is written clearly and covers ground essential to the pre-calculus student. Algebra, analytic geometry, and trigonometry are skillfully combined, not relegated to separate parts of the book. This unifies the subject of mathematics and makes it less terrifying.

At the beginning, symbols and functions are introduced to the future engineer and scientist. Following chapters describe linear, quadratic, and polynominal functions. Then the reader discovers the utility of exponents, logarithms, trigonometric functions. Each subject is tied in with practical illustrations and applications. The appendix lists useful tables for reference.

Exercises appear throughout the book, and answers are provided at the back of the book. This feature makes it as suitable for self-study as it is for formal classroom work-IQ
U.H.F. PRACTICES AND PRINCIPLES, by Allen Lytel. Published by John F. Rider Publisher, Inc., 480 Canal St., New York 13, N. Y. $51 / 4 \quad$ x $81 / 4$ inches, 390 pages. Price $\$ 6.60$.

This is an easy and logical introduction to modern high-frequency work for the technician who understands lower frequencies. The explanations are clear and little math is employed. First, the book shows how h.f. differs from

# Radio School Directory 

## Unlimited Opportunities in RADIO ENGINEERINE

## DEGREE IN 27 MONTHS

 Complete Rodio Engineering course including Jalev. U. H. F. and F. M. Bochelor of Science Degree olso in Mech., Civil. Elect., Chem., ond Aero. Eng.; Bus. Adm., Acci. Extensive campus, modern buildings. well equipped lobs. Low cost. Prep courses. Personal-ized, proctical instruction. Founded I884, Placement ized, Drocfical instruction. Founded 1884. Placement
fipg service. Growing shortage of engineers. Prepare now, approved for Korean vets Enter Jonvary, March, June, September. Ii] Enter Jonvary, Morch.
ifont TRISTATE QOLLECE

2413 College Ave. ANGOLA, IND.

## GET INTO TV SERVICING

Send for FREE 24-page illustrated booklet which
tells you How to Become A Successful TV Technlcian. America's Leading TV Servicing Schoal offers you specialized training program that amits non-essen fial moth \& design theory. You concentrate on rodio \& TV servicing only. You get professional training \& experience right in our fully-equipped shops \& laboratories. Send for this Booklel today. Write Depit E-12. No obligotion-no solesmon will call. APPROVED FOR VETERANS
WESTERN TELEVISION INSTITUTE 341 W. 18 th St., Los Angeles 15 , Calif.

## PEN-OSCIL-LITE

Exiremely, convenlent test oscillator for all radio
servicing; allgnnent - Snall as a pen . Sel



GENERAL TEST EQUIPMENT 38 Argyle Ave. Buffalo 9, N. Y.


JANUARY, 1953


|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## FOR THE FIRST TIME!

For several years you've read about the Don Martin School now-for the first time-we ar prepared to offer a course by mail. You can obtain your first class radio telephone operator's license from this special course. Operators are desperately needed now by radio and TV stations as well as the aircraft industry. Secure your future.
Be certain that your training is of the best, enjoy the school recognized by the profession. Write today for full information.

THE DON MARTIN SCHOOL OF RADIO AND TELEVISION ARTS AND SCIENCES 1655 No. Cherokee. Hollywood 28, Calif. HU, 2-3281.


##  <br> Intensire, speclalized coupse including strong basis In mathematics and electrical enkineering, adranced radio theory and design, telerision. Modern lab. Low tultion. Eeif-help opportunlties. Also B.S. degree in 27 months Mechanical Engineering. G.1. Gov't Electrical. and <br> INDIANA TECHNIGAL COLLEGE

## Become an ELECTRICAL ENGINEER in 36 MONTHS

## Bachelor of Science Degree - Major in Electronics or Power

It is estimated by 1955 there will be at least two positions for every engineering and technician graduate. This college offers a tested plan that permits you to enter these vast employment opportunities at an early date. Save a valuable year through optional yearround study. Receive advanced credit for prior training gained in the armed forces, other schools or field experience. ENTER BOTH RADIO AND TELEVISION 12 months or one-third of the $B$. S. degree course (Electronics major) - alsó brings you the Radio Technician's certificate. An added 6-month course qualifies you for the Radio-TV Tech nician's certificate. Recent developments open unlimited opportunities for TV technicians and engineers.

THE PROVEN "UNIT CHASSIS SYSTEM" Of teaching was developed here. It "breaks down" the TV set by stages. You learn every component of all types and makes and are prepared for future design changes, including the advent of color.
6 TO 12 -MONTH TELEVISION SERVICE COURSE . . . trains for good servicing jot; and shop ownership in the shortest practical time under expert Instructors.
Terms open April, July, October, January. Over 48,000 former students from all States and 23 overseas countries. Faculty of trained specialists. Modern aboratories and equipment.
Write for free 110-page catalog, 48-page pictorial booklet "Your Career"' and

MILWAUKEE SCHOOL OF ENGINEERING


NEED TUBES?
Make Barry your source for FAST-DELIVERY on all
types. We carry alf the standard brands. Als tubes types, We cary alt the standard brands. All tu
individually cartoned and carry standard RMA Gut
antee.
Tube Orders Over $\$ 8.00$ with full

Prior to shipment, all tubes INDIVIDUALLY retested Prior to shipmenc, ad) on our Hickok Mutual-conduct-
not just sot-checked)
ance cllantise. For your maximum money's worth, buy in
full confidence from TUBE-SPECIALISTS. Herc is only a partial listing of our large stocks. You may
order types not listed at approx. same savings.
OA2 $\ldots . \$^{95} .9$ SAT6 $\ldots . .6312 \mathrm{H6}$

OB2 $\mathrm{OC} / \mathrm{VRIO}$ OD3/VR150

## OZ4

$1 A 7 G T$
lAE4
1B3GT
1 1B3GT
3 H5GT
1H5
IN5
114
1 L
1 L
1 N
1N23-A :
IN34
iN3/-
N
IN
IN
IN
IN

## $1 \times 2$

- 영
$\begin{array}{lll}\text { 2D21 } & \cdots & 1.3 \\ \text { 2E24 } & \cdots & 1.75\end{array}$


3D6 1299
$3 Q_{4} / 299$
$3 Q 5 G T / G$

| $305 G T / G$ | .9 |
| :--- | :--- |
| $3 S 4$ | $\cdots$ |
| 5FP7 | .8 |

 5R4GY ${ }^{\cdots}$. 1. $\begin{array}{lll}5 U 4-G & .55 & 6 W 4-G T \\ 5 V 4-G & \cdots & 1.106 \times 5 \cdot G T\end{array}$


|  |
| :---: |
|  |  |
|  |  |

SELENIUM RECTIFIERS

| Current (Continuous) | $\begin{aligned} & \text { Full-Wave } \\ & \begin{array}{\|l\|} 18 / 14 \\ \text { Volts } \end{array} \end{aligned}$ | Bridge 36/28 | Types | $\begin{gathered} 130 / 100 \\ \text { Volts } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 54/42 |  |
|  |  | Volts | Volts |  |
| 1 Amp. | \$1.35 | \$2.15 | \$3.70 | \$7.50 |
| 2 Amps. | 2.20 | 3.60 | 5.40 | 10.50 |
| 21/2 Amps. |  |  | 6.00 | 13.00 |
| 4 Amps. | 3.75 | 6.75 | 10.25 |  |
| 5 Amps. | 4.25 | 7.95 | 12.95 | 25.25 |
| 6 Amps. | 4.75 | 9.00 | 13.50 | 33.00 |
| 10 Amps. | 6.75 | 12.75 | 20.00 | 40.00 |
| 12 Amps. | 8.50 | 16.25 | 25.50 | 45.00 |
| 20 Amps. | 13.25 | 25.50 | 39.00 | 79.50 |
| 24 Amps. | 16.25 | 32.50 | 45.00 | 90.00 |
| 30 Amps. | 20.00 | 38.50 |  |  |
| 36 Amps. | 25.00 | 48.50 | $\cdots$ |  |

- New, Selenium Recfifier Transformers




## - 11






136 liberty Street. N.Y. 6, N.Y. REctor 2.2562


## ADVERTISING INDEX



All Chaninel Antenna
Alliance Mfg. Co.
Allied Radio Corp.
American Electrical Meater Co
American Electronics Co.
American Phenolic Corp..
Amplifier Corp. of America
Amplifier Corpo of Americ
Arkay Rad io Kits, inc.
Astatic Corp.
Audel Publisher
Barry Electronics
Bell Telephone Labs
Bell Telephone Labs
Bendix Radio
Blonder-Tongue Labs
Brook Electronics.
Inc.
Buchan Co.i Richard
Burste in -Applebee $\mathbf{c}$
.
candler system co.
Capitol Radio Engineering institute
Cisin. H. G.
Cleveland institute of riadio Electronic
columbia Wire © Supply Co.
Commissioned Electronics
Cornerli-Dubilier Electric Corp.
Coyne Electrical Ku TV Radio school
Crescent Radio on Television School.
Crescent Radio $\boldsymbol{\delta}_{\text {s }}$ Television School.
Crest Laboratories, Inc.
Davis Electronics
De Cray
De Cray Associates. Aic....
De Forest's Traning.
Dumont Labs. Inc., Allen B.
Editors Kin Engineers
Edie Electronics
Electronic Instrument co.. inc.
Equtro.
Equipto
Federated
Federated Purchaser
Feiler Engineering $\mathbf{C o}$
Finney Co.
General Cemeit
General Cement
General Electronic Dist. co
Gelleral Test Equipment

Hallorson Transformer Co.
Harvey Radio Co., Inc
Harvey Rad
Heath Co.
Hickok El
Hi-Lo TV Antenna instrument co
Hudson Radio \& Tughes Corp
Hyghes Research \& Development
Indian Rado \& Electronics Corp
Instrana Technical
Insuline Corn Co
Insuline corporation of America
Internationaa Correspondence Schools
IFD Manufactur
JFO Manufacturing Co., Inc.
Jackson EEectrical Instrument
Jan Electronic
Jan Electronic Distributing Co.
Jersey Specialty Co.
Jones \& Laughtin Steel Corp
LaPon, Inc.
Leotone Radiacomold corp.
Leotze Radio Corp
Leutz charles Roland
Macmillan Co. The
Macmillan co.. The
Mallory $\&$ co.
Mattison Television, Si Radio corp.
Wharaw-Hill Book $C_{0}$
Merit Coil \& Transformer co
Michel Mlanufacturing co
Miles Reproducer C
Milier Cor,
Mosley Eiectronics.
Moss Electronic Distributing co., Inc
National Electronics of Cleveland.
National Plans Co.
National Radio Institute
National Schools.
Neal Electronic Co.
Oak Ridge Products
Onmice Manufacturing co.
Opportunity Adlets
Perma-power Co.
Pickering
Plastoid
Corp
Platt Electronics Corp.
Precise Development co
Precise $i o n$ Apelopment Corp.
Prentice-Hall, inc.
Presprose Co.
Progressive Electronic
Quam-Nichols Co.
RCA intitutes,
Radiart Corp.
Rad io city products Radio MMerchandise Sales. inc
Radio Recetor Co

RADIO SCHOOL DIRECTORY PAGE 177



Radio-Television Training Assn
Ram. Electronics Sales Co.
Ram. Electronics Sales Co.
Rautand Corp.if Me Mring co.
Regency Div. (I.D.E.A., Inc.)

Rek-a-kut Co.
Rider, Inc., Jonn
Rinehart Books, Inc

Sangamo Electric Co.
Schott Co., Walter
Schot Co, Water
Service Instrumert
Simpo.
Skmpson Electric co.
Skyline manufacturing co.
Soundtronics Latus.
Soundtronics Labs. In
Sprague Products co.
Sprayberry Academy of Ridio
Stan- Burn Radio 8 Electranics
Stan-Burn Radio \& Electron
Standard Transformere Corp.
Steve-E1 Electronics Corp.
Stevar El Electronics co
Stevereme Publications
S Ppreme
Supreme Plebications
Sylvania Eletric Products
TV Products Co.
Tab …
Yab
Tallen company, inc.
Tech Master Product
Tech-Master Products
Technical Appliance C
Tel-A-Ray Enterprises Inc
Telpmatic Industries, Inc.
Telpmaty colus.
Telesound Corp.
Television Commications institute
Television materials, Inc.
Teleision Materials, Inc
Thomas Mold si pie co.
Transvision. Inc.
Triad fransformer miafacturing co.
Trio Manufacturing co. ${ }^{\text {Tiplett }}$ Electronic instrint co.
Tung-Sal Electric co
Turner Co.. The
United Catalog Publishers
University Loudspeakers
Utah Radio Products
Vidaire Television co
Ward Products Corp
Wells Sales
Wholesale Radio P
Wiley \&ons, Inc.
Wincharger Corp.
Radio-Electronics does not assume responsibility for any errors appearing in above Index.

## WHEN YOU ORDER weus <br> COMPONENTS <br> HERE'S WHAT <br>  <br>  <br> - IMMEDIATE DELIVERY FROM STOCK <br>  <br> 2 FINEST QUALITY OF FAMOUS BRANDS <br> G GENERALLY LOWER PRICES <br> $\square$ RETURN PRIVILEGE FOR FULL <br> CREDIT IF NOT SUITED TO YOUR REQUIREMENTS

The valuable service Wells provides to the industry is being used by many of our greatest manufacturers as a matter of course.

Our vast stock (the world's largest) may contain just the components you need to fill urgent orders - at a substantial sarings in time and cost.

ADEL CLAMP5 ANTENNAS, Insulators, Mast Sertiens - BINDING POSTS BLOWERS © CABLE ASSEMBLIES CHOKES - COILS - CONDENSERS Oil Filled, Batheub, Hearing Aid, Transmitting Micas, Silver Micas, Ceramic, Variable, Trimmer : CRYS. ERATORS GROUND RODS HEADSETS • I.F. COILS * JACKS *JACK BOXES KOYS Telegraph MOTORS \& RRUSHES: PIUGS MECTIFIERS SEGS MOIORS \& BRUSHES * PLUGS RECIFISRSSELII ium, Copper OXide, Meter, Diode SESISTORS-AII
Types SELSYNS SWCKETS SWITCHES Types SELSYNS SOCKETS SWITCHES
Aircraft Micro Switchettes, TOgqle IIMERS TUBAircraft, Micro, Switchettes, Toggle : TRANSFORMERS
ING-Flexible TUNING SHAFTS . TRANSFR All Types : VIBRATORS : WALKIE TALKIES

## DYNAMOTORS



OVER 100,000 NEW DYNAMOTORS IN STOCK!

DM 32A - DM 53A - PE 86 - PE 101 C DM 33A - D 101 - PE 94, etc.
arge quantities of brushes for all types of dynamotors and motors.

Write us for quotations. Advise us your requirements.

A complete Signal Corps stock number list. ing of items in our stock. Write for listing No. SG-200. (for government agencies and contractors only.)
Manufacturers and distributors-write for new Condenser Catalog C-10 now available.
Write, Wire, Phone Your Requirements all phones: SEeley 8-4143

## Mrg

833 W. CHICAGO AVE., DEPT. 2, CHICAGO 22, ILL.

## TV ENGINEERS

(Experienced in TV Receiver \& Broadcast Radio Design)

## Bendix Radio's Expansion

 $M_{\text {leans }} O_{p p o r t u n i t y ~ f o r ~}$ You!A lar oe expansion barogram in our Television Division means we have ceiver and Broadcast Radio Design Engineers. It means you have the chance to pet in on the ground floor...an opportunity for rapid

At Bendix Radio, the work is interesting and challenging. There is work on chassis design and development on current sets; there is research in the field of color U. H. F., etc.

At Bendix Radio, you work under ideal conditions In our modern. air-conditioned plant. You benefit from paid vacations and holidays. group insurance and many em. ployee benefits in plus good living ban areas that surround our plant.

Send résumé to Mr. E. O. Cole, Dept. T

## Bendix Radio

division of bendix aviation cord.
ALIIMORE-4, MD. Phone: TOWSON 2200

## TUBES ,is

Top Quality af Terrific Savings RTMA Guaranteed

lower frequencies. Then it proceeds with i.h.f. techniques and illustrates equip ant.

One important chapter deals with transmission lines and how they are used 8 s tuning elements, filters, and transformers. Waveguides are shown to be developed from lines. Other chapter de il with u.h.f. circuits and tubes. Butter l y circuits, travelling wave tubes, and otb ers are included. An interesting chapter describes and illustrates several types if TV converters. Transmitters, test eq upment, and h.f. measurements are ald, described in the book. -IQ

FUND. IMENTALS OF ENGINEERING E ECTRONICS, Second Edition, by Will jam G. Dow. Published by John Wiley Sons, Inc., 440 Fourth Ave., New Y rok $16, \mathrm{~N} . \mathrm{Y} .5 \frac{1}{4} \times 9$ inches, 627 pas es. Price $\$ 8.50$.

This book concentrates on tubes and semicorductors, rather than circuits. The level is suitable for college junior students. It is also well arranged for referen e use. Physical explanations, and ma $y$ y illustrations and mathematical ana yses are provided.

The first chapters establish basic principle 3 s of potential distribution, electron ba listics, and cathode rays. Then material! is presented on fields within a tube, capacitance effects, tube characterist cs, and thermionic cathodes. An important chapter describes electrons is metals and semiconductors to provide a good understanding of transistors, rectifiers, and photosensitive devices. There are also chapters on amplifit rs, oscillators, and microwave tube ty: res.
The $r$ smainder of the volume explains phenom ana within gas tubes and photosensitiv: devices. Arcs, glow tubes, and gas rectifiers are illustrated and described in the final chapters.- $I Q$

ELECT ROMAGNETICS by Robert M. Whitney, published by Prentice-Hall, Inc., New York, N. Y. $51 / 2 \times 81 / 4$ inches, 270 page es. Price $\$ 6.65$.

This is a book for engineering students. It emphasizes field theory and prepares the reader for a good understanding of fields and waves. A knowledge of calculus is required. It introduces the reader to vectors, after which this type of analysis is used freely. The mathematical treatment is effective and clear.
The first chapter describes charge, field and potential. Then electrostatics, d.c., magnetics, and ac., are discussed in turn. The author shows the meaning and application of gradient, divergence, curl, and other concepts. Later chaptels derive Maxwell's equations and other important laws. Advanced topics relating to fields and waves are coveered in the final chapters.

Each chapter ends with a series of problems.-IQ

END
TV CONSULTANT, by Harry G. Cisin, was reviewed in the November issue under the erroneous title: "Rapid Trowble Shooting and Alignment." Our a pologres to Mr. Cisin for the error.


New 11th Edition Just Out! RADIO OPERATING QUESTIONS AND ANSWERS

By J. L. Hornung

Hopkins Engineering Company and Alexander A. Mckenzie Associate Editor, Electronics
545 pages, 139 illustrations, over 1900 answers, $\$ 6.00$
IF YOU had taken your first FCC exam back I in 1921, the heavy odds are you'd have gotten ready for it by studying the first edition of Hornung's book (then it was the famous "Nilson and Hornung's Questions and Answers"). It helped thousands then; it's since gone through ten ed(ions that have kept the fast pace of changes in FCC requirements and big advances in the field. Now comes the new eleventh edition brought up to date to follow the new FCC study guide question for question. arranged by topics so that it's easy to study, handy for reference . built for lasting value by showing you how to keep up with month-to-month changes. In this book you get a full, accurate "passing" answer to every question in the FCC Study Guide -an answer so complete that, no matter how the question is phrased on the exam, you will be able to get it right.

What you get in the new edition
of this long-popular and proved book:
Answers, ot all questions suggested for studly in the FCC " ${ }^{\text {Study Guide and Reference Material I or }}$ Commercial Radio Operator Examinations. Revised information on radio law operalng practice a specific for commercial radio operator examinations of the various license grades

Coverage of every ulomerit in the FCC exams, including the advanced owes of element 7 (airradiotelegraph) and element 8 (ship radar).
The newer Q-endes for special purposes, time slenal information. word lists, and the the Now material covering changes in the law. radar, and operating practices particularly as it applies to the newer mobile nervices (offer good in U.S. oily)

## I SEE THIS BOOK 10 DAYS FREE -

MeGraw-llill Rook Co.. 327 W. 41 St., NYC 36 I I Send me Homing and Mrkenzis'p RADIO OPER. I ATING OUESTIONS AAD) ANSWERS for 10 days. | S6.00, plus a few cents for delivery, or wellirn the with this coupon: same return privilege, your remit I Name.
I Address
| City .......................... Zone..... Stale.........
I Position................................................|


866A KIT AND XFORMER
 DIODE PROBE TUBE
Unexcelled for No-Loss VHF testing. Ultra-
Sensilye vebminiature-envelope, New wh
data VR92 TAB "SUN-FLASH" LAMPS


 HIV PHOTOFLASH KIT



LO.VOLT PHOTOFLASH KIT
 Cabie. Power Transformer \& CD Flash Ca-
paciors. (2) zoo Mqd Each W/Output of 100
Watt Sec. Alt Resistors. Capactors. Recth.
 - PHOTOFLASH CAPACITORS








KITS AND COMPONENTS SPRGE CRP3 Vert Integrator Netwh 3 Res
3GNUSR onl 3 LEADS 2965 for $\$ 1.00$
 Litenses $69 ¢$
Siver
Controls, mica
Mo

 Rotary Switches, Asstd,
Ceramion Chdsrs, Asst,
Electrofytic Condensers.


VARIABLE CONDENSERS




## METER SPECIALS


 TEST EQUIPMENT nodel 103 -ACCDC 24 ranges VOM: $A C \& D C$
10 mgs 10 3000
norrent

 mps, ohms 2 rags to 1 megohm. Compact. SPECIAL POSt Paid model. ..... $\$ 13.98$ ures include: ACADC 10 vit meter. Fea ohms ${ }^{5}$ ranges to response megothms, 100.0000
cycles. ACsigned for field alignment of TV
 Model 106-In Kit form SpECIAL P2 Post


## [畐AB:

BENCH TOOLS
 Pliers Linesmans 7" Heavy Duty....... 79 . 25
All (3 Pliers Listed Above
Drill set 9 Hes $1 / 10^{4}$ to $1 / 4$ Hardened \&

 Recess Interchangeable Bliades. W/Wra
Around Plastc Case. Special. Speed Steel, Std Length.
29 piece orill set. 1/18",


 INFRARED SNOOPERSCOPE Image-Converter T-DARK TUBE plified design $2 \pi$ dia. Willemite screen-
Resolution up to 350 Wine/in. Complete
data
 $1800 \mathrm{VDC/} / 35 \mathrm{MA}$, Using Doubler Crkt. Trans.
former. Rectifis. Sockets. Resistors. Ca.

 Precision Potentiometer | Tol. Type $800 A 1 . \$ 8.98$ |
| :--- |
| 000 Ohm, 10 Turn. $0.5 \%$ | Tol TYpe $1 \mathrm{KAZ}, \$ 7.98$

2000 Ohm, 10 Tura, $50 \% 8$ 5000 Ohm, 10 Turn, $0.1 \%$ Tolerance
Type 5 KAI io Turn, $0.15 \%$ Tol. $\$ 8.98$
Type
SA104. tV CONICAL ANTENNA AII Cha

 3AG: $1 / 8 \cdot 1 / 4,1 / 2$, Amp. EA, $5 \% ; 100$ for 3.98
3AG: $1 / 1 / 2,2,4,15,20$ Amp.
Ea. $3 e$






SPECIALS



## BTORAGE BATTERIES


 6V $/ 6 A H$ Battery
6V/40AH Wiland
$6 \mathrm{~V} / 40 \mathrm{AH}$ Batury


\section*{| VISIT ''TABS'' NEW |
| :---: |
| SUPERMARKET |
| OF ELECTRONICS |
| 117 LIBERTY ST., N.Y.C. |}

 paid) Within Continental Limits of U.S.A -




## 

DEPT. IRE 111 LIBERTY STREET NEW YORK 6, N.Y., U.S.A.


Money Back Guarantee (Cost of Mdse. Only) $\$ 5$ Min. Order F.O.B Dep. Tubes Gtd. via R-Exp. only Prices subject to Change Without Notice. Phone Rector 2-6245.

 WAVE AUDIO GEN.
KIT $\$ 31.95$. WIRED $\$ 49.95$


KIT S19.05: 320. SIG. GEN WIRED $\$ 29.95$ KIT $\$ 23.95$. WImED $\$ 34.95$


315K DELUXE SIG GEN. KIT $\$ 39.95$


1040K batiery ellm.

## KITS-Wired Instruments

 For Laboratory Precision at Lowest Costthe Leaders Look to EICD! cBS.Combia. Inc., one of America's great headline-mak its new Television production lines and in its design BECAUSE like Emerson. Tele-King, Teletone, Majestic CBS . Columbia knows that another famous TV manufacture delivers all 10 E/CD NOmical featuresonly EICD Test raulpment Detive hat Enginering

1. Laboratory Precision
2. Lowest Cost
3. Lifetime Dependability
4. Speedy Operation
5. Rugged Construction
6. Quality Components
7. Latest Engineering
8. Super-Simplifid

Use Instructions
Use instuctions Appearance
9. Laboratary-SICO Make-Good
10. Exclusive

Guarantee Before You buy any higher-priced equipment, be sure EICO product the EICO line-in Wired as well as Kit form. is jam-packed with unbelievab - in stock at your local job see EICO instrume NOW for FREE newest INSIST ON EICO! SAVE 50\%! Writellow


NEW S36k muttimeter KIT $\$ 12.90$.
WIRED $\$ 14.90$. 1000 OHMS/VOIT res. decade box KIT Sl|9.95 WIRED $\$ 24.85$




Q30K R-C BRIDGE \& R.C. COMP. KIT $\$ 19.95$ WIRED $\$ 29.95$


NEW SGSK MULTIMETER WIRED $\$ 20.95$. 20,000 OHMS/VOLT


625K TUBE
KIT $\$ 34.95$ WIRED $\$ 49.95$
AMERICA'S GREATEST INSTRUMENT VALUESBEARTHENAMEजाजत
ELECTRONIC INSTRUMENT CO., INC. 84 Withers Street, Brooklyn 11, N. Y.


## RCA safeguards your reputation... with tubes of unequaled quality

## In RCA Tubes and Kinescopes

 the difference is top-quality controlRADIO CORPORATION OF AMERICA

ELECTRON TUEES


a DOUBLF-THET
sofegoord your reputation


# ADV Plans, 

## Copyright Notice:

The entire contents of this CD/DVD are copyright 2014 by ADV Plans, LLC. All Rights Reserved.

Reproduction or distribution of this disk, either free or for a fee is strictly prohibited. We actively monitor and remove listings on eBay thru Vero.

You are free to copy or use individual images in your own projects, magazines,
 brochures or other school projects.

Only the sellers listed here are authorized distributors of this collection: www.theclassicarchives.com/authorizedsuppliers

Please view our other products at www.theclassicarchives.com, or our ebay stores:


[^0]:    Order from your Parts Jobber today, or write direct to Howard W. Sams \& Co., Inc. 2205 East 46th Street, Indianapolis 5, Ind.
    My (check) (money order) for $\$$. enclosed. Send the following books:

    TK-1 (\$1.50)
    $\square$ TN-1 (\$3.00)
    | Name............................................
    $\qquad$
    

[^1]:    RAYTHEON MANUFAGTURING GOMPANY
    Receiving Tube Division
    Exacellence in Eilechonics
    Newton, Mass., Chicago, III., Atlanta, Ga., Los Angeles, Colif.
    

[^2]:    *Manager, Radio and Allocations Engineering. National Broadcasting Company, Inc.

[^3]:    * President, John F. Rider Publisher, Inc.

[^4]:    * Sylvania Electric Products Inc., Bayside. New York.

[^5]:    For a compilation of v.h.f. dx worked during this period, see November, 1952, QST, page 45.

[^6]:    *Chief Engineer, WELI, New Haven, Conn.

[^7]:    * Zenith's Fringelock-July, page 38.

    Philco noise-immune sync-September, page 45 .

[^8]:    * Engineer, National Broadeasting Co.

[^9]:    JANUARY， 1953

[^10]:    PLASTOID CORP.
    42-61 24th St., Long Island City I, N. Y.
    $\square$ We are interested in Synkote OVALTUBE.
    $\square$ We are also interested in $\square$ hook-up wire; $\square$ iwin-lead; $\square$ coaxial cable; $\square$ microphone cable; $\square$ mulfi-canductor cable.

    Name:
    Company:
    $\qquad$
    City:
    City:

[^11]:    ## Name

    Address

[^12]:    below. Satlsfaction guaranteed or money back.

[^13]:    JANUARY, I953

[^14]:    GREYLOCK ELECTRONICS. Dept. C-I

    - 115 Liberty St., N. Y. 6

    Send FREE Catalog \#200 at once to
    Name
    Address
    City

[^15]:    vember 17, 1952
    $\$ 10,162,97$

[^16]:    BUY FROM YOUR DISTRIBUTOR
    AT PRICES SHOWN, OR ADD $10 \%$ ON DIRECT MAIL ORDERS TO
    EDITORS and ENGINEERS, LId., 1305 KENWOOD ROAD, SANTA BARBARA, CALIF. Bookstores order from BAKER AND TAYLOR CO., Hillside, New Jersey

